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Chapter 1

The MHD Equations

A plasma is an electrically conducting fluid or gas consisting totally or par-
tially of charged particles. The self-consistent theoretical description of a
plasma is usually difficult because any electro-magnetic fields influence the
motion of the plasma (charged particles) and at the same time the mov-
ing charges act as sources of the electro-magnetic field. A self-consistent
description therefore leads to non-linear equations.

There are different levels of theoretical description for a plasma:

• N-body problem: equation of motion for each particle plus microscopic
Maxwell’s equations

Ensemble averaging

• Statistical Mechanics: Liouville’s equation for N particle distribution
function plus Maxwell’s equations with averaged sources

BBGKY hierarchy

• Kinetic description: Boltzmann equation for one particle distribution
functions plus Maxwell’s equation with sources derived from integrat-
ing one particle distribution functions over velocity space

velocity moments

• (Multi-)Fluid description: Hydrodynamic equations including mean-
field Lorentz force for each particle species + Maxwell’s equations

quasi-neutrality, v ≪ c, mi ≫ me, . . .

• Single Fluid description (MHD)
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For a detailed discussion of some of the steps see e.g. Balescu (1988).
Since the MHD equations have been discussed in many textbooks (e.g.

Alfvén, 1950; Cowling, 1976; Mestel, 1999; Parker, 1979; Priest, 1982; Roberts,
1967; Sturrock, 1994) we will only state them here and discuss the physical
meaning of the individual equations briefly.

a) Continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 (mass conservation) (1.1)

b) Momentum conservation equation (equation of motion)

ρ

(
∂v

∂t
+ v · ∇v

)

= j×B−∇p− ρ∇ψ (1.2)

c) Energy equation (various different forms possible)

ργ
∂

∂t

(
p

ργ

)

+ v · ∇
(
p

ργ

)

= −(γ − 1)L (1.3)

where

L = ∇ · q
︸ ︷︷ ︸

heat flux

+

radiative losses
︷︸︸︷

Lr − j2

σ
︸︷︷︸

Ohmic heating

−
everything else

︷︸︸︷

H. (1.4)

d) Ampère’s law

∇×B = µ0j (1.5)

(displacement current neglected).

e) Faraday’s law

∇×E = −∂B
∂t

(1.6)

f) no magnetic monopoles

∇ ·B = 0 (1.7)

g) Ohm’s law

E+ v ×B = R (1.8)
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R is a general right hand side and could contain Hall terms, electron
and ion inertia terms etc. In MHD applications one often uses the
simple form R = ηj. Ohm’s law can be regarded as a left-over of the
electron equation of motion.

3



Chapter 2

Magnetohydrostatics

Magnetohydrostatics (MHS) is the theory of the static (∂/∂t = 0, v = 0)
equilibria of the MHD equations.

Under these assumptions we can see immediately that

a) the continuity equation is automatically satisfied

b) the momentum conservation equation becomes a force balance equa-
tion

0 = j×B−∇p− ρ∇ψ (2.1)

c) the energy equation becomes

L = 0 (2.2)

and will not be used at the moment.

d) Ampère’s law remains unchanged

∇×B = µ0j (2.3)

e) Faraday’s law

∇×E = 0 =⇒ E = ∇ϕ (2.4)

f) no magnetic monopoles

∇ ·B = 0 (2.5)

g) Ohm’s law (assuming R = 0)

E = 0 (2.6)
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We finally end up with a set of three equations:

j×B−∇p− ρ∇ψ = 0

∇×B = µ0j

∇ ·B = 0

(2.7)

This set of equations has to be completed by an equation of state and
assumptions about the temperature or an energy equation.

The fundamental question is:

Why is it useful to study MHS solutions ?

There are many answers to this question. I only state two which to me
seem to be quite important.

a) From a fundamental point of view we can regard the MHD equations as
a set of equations describing extremely complicated dynamical systems.
In the study of dynamical systems it is always useful to start with a
study of the simplest solutions. These are usually the stationary states
and their bifurcation properties, in the MHD case the static equilibria.

b) From the point of view of modelling, many physical processes in plasma
systems occur slowly, i.e. on time-scales which are much longer than
the typical time-scale of the system. Such processes can be described
systematically in the following way (see also Schindler and Birn, 1986).
Let L be the length scale of the system, T the slow time scale of
evolution and vA = B0/

√
µ0ρ0 a typical Alfvén speed. We then define

the Alfvén time by TA = L/vA. The main assumption now is that

TA
T

=
v

vA
= ε≪ 1. (2.8)

We now normalize lengths by L, velocities by v, the magnetic field
by B0, the density by ρ0, the pressure by p0 and the gravitational
potential by ψ0. Normalised quantities will be denoted by a .̃ We
obtain

ε2ρ̃

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)

= j̃× B̃− 2βp∇̃p̃− 2βg ρ̃∇̃ψ̃. (2.9)

Here, βp is the ratio between plasma pressure and magnetic pressure,
the so-called plasma beta, whereas βg is a similar ratio between the
gravitational energy density and the magnetic pressure. Both numbers
measure the relative importance of pressure gradient and gravitational
force with respect to the j×B-force.

Since ε is assume to be small, we obtain to lowest order

0 = j̃× B̃− 2βp∇̃p̃− 2βg ρ̃∇̃ψ̃. (2.10)
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So to lowest order we have the MHS force balance equation as funda-
mental equation and the time t̃ appears merely as a parameter. The
fundamental importance of this quasi-static approximation lies in the
fact that sequences of MHS equilibria can be used to model the slow
evolution of plasma systems. However, one cautionary remark has to
be made at this point: these sequences have to satisfy the constraints
imposed by the other equations, especially Ohm’s law and the conti-
nuity equations. These constraints usually lead to very complicated
integro-differential problems which are difficult to solve.
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Chapter 3

Symmetric Systems

We now assume that the solutions we want to find have spatial symmetries.
The three most important symmetries are

• translational symmetry

• rotational symmetry

• helical symmetry .

Only in these three cases it is possible to reduce the MHS equations
to one single elliptic second order partial differential equation (Solov’ev,
1967; Edenstrasser, 1980a,b). We will now show how this reduction can be
achieved.

3.1 Translational Invariance with no External Forces

The basic equations are

j×B−∇p− ρ∇ψ = 0 (3.1)

∇×B = µ0j (3.2)

∇ ·B = 0 (3.3)

The usual (and probably best) way to tackle the problem is to write B

in a form such that Eq. (3.3) is automatically satisfied. Let us assume that
the invariant direction is the y-direction. Then

∂

∂y
= 0. (3.4)

Writing B as
B = ∇×C (3.5)
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with a vector potential C is one possibility, but not the best one in this case.
We rather write

B = ∇A× ey +Byey

= ∇× (Aey) +Byey (3.6)

Here A and By depend only on x and z. Note that A is the y-component
of the vector potential C. A is usually called the flux function, because it is
directly related to the magnetic flux in the xz-plane.

We also have

B · ∇A = (∇A× ey) · ∇A
︸ ︷︷ ︸

=0

+By ey · ∇A
︸ ︷︷ ︸

=0 since ∂A
∂y

=0

= 0. (3.7)

It follows that A is constant along magnetic field lines.
Magnetic field lines are defined by

dr

dσ
=

B (r(σ))

|B| (3.8)

and we get
dr

dσ
· ∇A =

1

|B|
dA

dσ
= 0. (3.9)

The last equality shows that contours of A are projections of magnetic field
lines onto the xz-plane.

Next we multiply Eq. (3.1) by B and get

B · (j×B) = B · ∇p = (∇A× ey) · ∇p+By ey · ∇p
︸ ︷︷ ︸

=0 since ∂p
∂y

=0

. (3.10)

The left hand side of this equation vanishes and we obtain

B · ∇p = 0. (3.11)

Equation (3.11) implies that the pressure p is constant along field lines and
actually

(∇A× ey) · ∇p = 0. (3.12)

Written in terms of partial derivatives this equation becomes

∂A

∂z

∂p

∂x
− ∂A

∂x

∂p

∂z
= 0. (3.13)

We conclude that
p(x, z) = F (A(x, z)) (3.14)

where F is an arbitrary positive function of A.
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The current density follows from Eq. (3.2)

∇×B = ∇× (∇× (Aey)) +∇By × ey

= −∆Aey +∇ [∇ · (Aey)]
︸ ︷︷ ︸

=0

+∇By × ey

= µ0j (3.15)

and

j×B =
1

µ0

{

−∆A [ey × (∇A× ey)] +

(∇By × ey)× (∇A× ey +Byey)

}

=
1

µ0

{

−∆A∇A+ [(∇By × ey) · ey]
︸ ︷︷ ︸

=0

∇A−

[(∇By × ey) · ∇A] ey −By∇By
}

. (3.16)

Since ∇p = dp/dA∇A, we get

−∆A∇A− [(∇A×∇By) · ey] ey −By∇By = µ0
dp

dA
∇A. (3.17)

The y-component of this equation gives

∂A

∂z

∂By
∂x

− ∂A

∂x

∂By
∂z

= 0. (3.18)

In the same way as for the pressure we conclude that

By(x, z) = G(A(x, z)), (3.19)

implying that By is constant along field line projections onto the xz-plane.
The ∇A-component then gives

−∆A = µ0
dp

dA
+By

dBy
dA

. (3.20)

This is the fundamental equation to be solved. It is usually called the
Grad-Shafranov(-Schlüter) equation named after some of the people who
first derived it (earlier versions have been found by Chandrasekhar, Dungey
and others).

The pressure p and the magnetic field component By are free functions
of A, which have to be chosen or fixed by additional information.

The right hand side of Eq. (3.20) is basically the y-component of the
current density:

µ0jy = µ0
dp

dA
+By

dBy
dA

. (3.21)
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3.2 Rotational Invariance with no External Forces

In this case, we represent the magnetic field in cylindrical coordinates ̟, φ
and z by

B = ∇A×∇φ+Bφeφ

=
1

̟
∇A× eφ +Bφeφ

= − 1

̟

∂A

∂z
e̟ +

1

̟

∂A

∂̟
ez +Bφeφ (3.22)

Here A is not the φ-component of the vector potential, but A/̟ is ! A does
not depend on φ. A is again called the flux function and lines of constant
A are magnetic field lines. Again we have that

B · ∇p = 0 (3.23)

and
p(̟, z) = F (A(̟, z)). (3.24)

The current density is given by

∇×B = −∂Bφ
∂z

e̟ −
[

1

̟

∂2A

∂z2
+

∂

∂̟

(
1

̟

∂A

∂̟

)]

eφ +
1

̟

∂

∂̟
(̟Bφ) ez

= µ0j (3.25)

Then

j×B = j×
(
1

̟
∇A× eφ +Bφeφ

)

=
1

̟
jφ∇A− 1

̟
(j · ∇A) eφ +Bφj× eφ

= − 1

µ0̟

{[

1

̟

∂2A

∂z2
+

∂

∂̟

(
1

̟

∂A

∂̟

)]

∇A−
[
1

̟

∂

∂̟
(̟Bφ)

∂A

∂z
− ∂Bφ

∂z

∂A

∂̟

]

eφ +

Bφ∇ (̟Bφ)

}

=
dp

dA
∇A. (3.26)

Looking at the φ-component of this equation we see that

1

̟

[
∂

∂̟
(̟Bφ)

∂A

∂z
− ∂

∂z
(̟Bφ)

∂A

∂̟

]

=
1

̟
B · ∇ (̟Bφ)

= 0. (3.27)
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It follows that
bφ(̟, z) = ̟Bφ(̟, z) = G(A(̟, z)). (3.28)

This allows us to write the rest of the equations as

− 1

µ0̟

[

∂

∂̟

(
1

̟

∂A

∂̟

)

+
1

̟

∂2A

∂z2

]

∇A− 1

µ0̟2
bφ
dbφ
dA

∇A =
dp

dA
∇A. (3.29)

Since all terms are in the direction of ∇A we finally obtain the Grad-
Shafranov(-Schlüter) equation for rotational symmetry in cylindrical coor-
dinates

−∇ ·
(

1

̟2
∇A

)

= µ0
dp

dA
+

1

̟2
bφ
dbφ
dA

(3.30)

This equation should not be confused with the Grad-Shafranov(-Schlüter)
equation in cylindrical coordinates but with translational symmetry, i.e.
∂/∂z = 0 instead of ∂/∂φ = 0 !

3.3 Helical Invariance with no External Forces

We have so far treated two special symmetries which seem to be quite ”nat-
ural”. The obvious question to ask is:

Are there other more general symmetries for which the MHS equations can
be reduced to a single elliptic PDE?

The answer to that question has two parts

a) Formulate the MHD equations in a general coordinate system ξ1, ξ2,
ξ3 and use tensor calculus to carry out the manipulations, see e.g.
Edenstrasser (1980a).

b) Assume that the physical quantities do not depend on ξ3, say. This
implies restrictions on the coordinate system, see e.g. Edenstrasser
(1980b).

The most general invariance for which the reduction to a single elliptic PDE
is possible is helical invariance. Here the coordinate lines along which the
physical quantities have to be invariant have the form of helices

H(̟,φ, z) = {̟,φ, z|̟ = const., u = nφ− kz = const.} (3.31)

with n and k real constants. So, in this case, ̟ and u are the two inde-
pendent variables upon which all the other quantities depend. We start our
analysis again by looking at the condition

∇ ·B = 0 (3.32)
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Figure 3.1: Helical line

which we rewrite in the following way in cylindrical coordinates ̟, φ, z:

1

̟

∂

∂̟
(̟B̟) +

1

̟

∂Bφ
∂φ

+
∂Bz
∂z

=
1

̟

∂

∂̟
(̟B̟) +

1

̟

∂u

∂φ

∂Bφ
∂u

+
∂u

∂z

∂Bz
∂u

= 0 (3.33)

because the components of B depend only on ̟ and u.
Substituting the definition of u into Eq. (3.33), we get

1

̟

∂

∂̟
(̟B̟) +

n

̟

∂Bφ
∂u

− k
∂Bz
∂u

=
1

̟

[
∂

∂̟
(̟B̟) +

∂

∂u
(nBφ − k̟Bz)

]

= 0 (3.34)

because ̟ and u are orthogonal coordinates. This equation is solved by
introducing a flux function A(̟,u) in the following way:

̟B̟ =
∂A

∂u
(= ̟e̟ ·B) (3.35)

nBφ − k̟Bz = − ∂A

∂̟
(= ̟∇u ·B). (3.36)

These two equations relate the three components of B, expressed in cylindri-
cal coordinates, with each other, and leaves one independent component of
B as in the previous cases. This is the component in the direction e̟×∇u.

By taking the scalar product of the momentum balance equation with
B we again get

B · ∇p = B̟
∂p

∂̟
+Bφ

∂u

∂φ

∂p

∂u
+Bz

∂u

∂z

∂p

∂u
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= B̟
∂p

∂̟
+

1

̟
(nBφ − k̟Bz)

∂p

∂u
= 0 (3.37)

Substituting our two equations for B in terms of A, we get

1

̟

(
∂A

∂u

∂p

∂r
− ∂A

∂r

∂p

∂u

)

= 0. (3.38)

As in the previous cases we may conclude that

p(r, u) = F (A(r, u)) (3.39)

and

∇p = dF

dA
∇A (3.40)

Next we consider the individual components of the momentum balance equa-
tion. First we calculate the current density j

µ0j = ∇×B

=

(
1

̟

∂Bz
∂φ

− ∂Bφ
∂z

)

e̟ +

(
∂B̟
∂z

− ∂Bz
∂̟

)

eφ +

[
1

̟

∂

∂̟
(̟Bφ)−

1

̟

∂B̟
∂φ

]

ez

=

(
n

̟

∂Bz
∂u

+ k
∂Bφ
∂u

)

e̟ +

(

−k∂B̟
∂u

− ∂Bz
∂̟

)

eφ +

[
1

̟

∂

∂̟
(̟Bφ)−

n

̟

∂B̟
∂u

]

ez (3.41)

and the j×B force follows as

j×B =
1

µ0

{[(

−k∂B̟
∂u

− ∂Bz
∂̟

)

Bz

−
[
1

̟

∂

∂̟
(̟Bφ)−

1

̟

∂B̟
∂φ

]

Bφ

]

e̟ +

[ [
1

̟

∂

∂̟
(̟Bφ)−

n

̟

∂B̟
∂u

]

B̟

−
(
n

̟

∂Bz
∂u

+ k
∂Bφ
∂u

)

Bz

]

eφ +

[(
n

̟

∂Bz
∂u

+ k
∂Bφ
∂u

)

Bφ

−
(

−k∂B̟
∂u

− ∂Bz
∂̟

)

B̟

]

ez

}

(3.42)
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We first look at the φ and the z-component of the force balance equation.
The φ-component gives

1

̟

[
∂

∂̟
(̟Bφ)− n

∂B̟
∂u

]

B̟ − 1

̟

(

n
∂Bz
∂u

+ k̟
∂Bφ
∂u

)

Bz = µ0
n

̟

dp

dA

∂A

∂u
(3.43)

and the z-component is

1

̟

(

n
∂Bz
∂u

+ k̟
∂Bφ
∂u

)

Bφ +

(

k
∂B̟
∂u

+
∂Bz
∂̟

)

B̟ = −µ0k
dp

dA

∂A

∂u
(3.44)

We multiply the φ-equation with k̟ and the z-equation with n, add the
two and get

k

[
∂

∂̟
(̟B̟)− n

∂Bφ
∂u

]

B̟ − k

[

n
∂Bz
∂u

+ k̟
∂Bφ
∂u

]

Bz +

n

̟

[

n
∂Bz
∂u

+ k̟
∂Bφ
∂u

]

Bφ + n

[

k
∂B̟
∂u

+
∂Bz
∂̟

]

B̟ = 0. (3.45)

It follows that

B̟





∂

∂̟




k̟Bφ + nBz
︸ ︷︷ ︸

=Bv




− kn

∂B̟
∂u

+ nk
∂B̟
∂u




 +

(
n

̟
Bφ − kBz

)
∂

∂u
(k̟Bφ + nBz) = 0. (3.46)

and therefore

̟B̟
∂Bv
∂̟

+ (nBφ − k̟Bz)
∂Bv
∂u

= 0. (3.47)

Substituting

̟B̟ =
∂A

∂u
(3.48)

and

nBφ − k̟Bz = − ∂A

∂̟
(3.49)

we get
∂A

∂u

∂Bv
∂̟

− ∂A

∂̟

∂Bv
∂u

= 0. (3.50)

From this equation we obtain finally that

Bv(̟,u) = h(A(̟,u)). (3.51)

From the two equations

nBφ − k̟Bz = − ∂A

∂̟
(3.52)

k̟Bφ + nBz = h(A) (3.53)
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we derive the following expressions for Bφ and Bz:

Bφ =
1

n2 + k2̟2

(

k̟h(A) − n
∂A

∂̟

)

(3.54)

Bz =
1

n2 + k2̟2

(

k̟
∂A

∂̟
+ nh(A)

)

(3.55)

To derive the Grad-Shafranov equation for helically symmetric equilibria,
we now have a look at the ̟-component of the momentum balance:
(

−k∂B̟
∂u

− ∂Bz
∂̟

)

Bz−
(
1

̟

∂

∂̟
(̟Bφ)−

n

̟

∂B̟
∂u

)

Bφ = µ0
dp

dA

∂A

∂̟
(3.56)

We substitute our expression for B̟ into the ∂/∂u derivatives and get

− 1

̟2

∂2A

∂u2







k̟Bz − nBφ
︸ ︷︷ ︸

∂A
∂̟








−Bz
∂Bz
∂̟

− Bφ
̟

∂

∂̟
(̟Bφ) = µ0

dp

dA

∂A

∂̟
. (3.57)

We rewrite this equation as

− 1

̟2

∂2A

∂u2
∂A

∂̟
−
[

1

2

∂

∂̟

(

B2
z +B2

φ

)

+
B2
φ

̟

]

= µ0
dp

dA

∂A

∂̟
. (3.58)

The strategy now is to substitute the expression for Bφ and Bz into this
equation and to manipulate it into a form that the term inside the brackets
also has a factor ∂A/∂̟. To do this we first calculate B2

z +B2
φ.

B2
z +B2

φ =
1

(n2 + k2̟2)2

[

k2̟2h2 − 2kn̟h
∂A

∂̟
+ n2

(
∂A

∂̟

)2

+k2̟2
(
∂A

∂̟

)2

+ 2kn̟h
∂A

∂̟
+ n2h2

]

=
1

n2 + k2̟2

[

h2 +

(
∂A

∂̟

)2
]

(3.59)

Then we obtain for the term in brackets

1

2

∂

∂̟

(

B2
φ +B2

z

)

+
1

̟
B2
φ =

− k2̟

(n2 + k2̟)2

[

h2 +

(
∂A

∂̟

)2
]

+
1

n2 + k2̟2

(

h
dh

dA

∂A

∂̟
+
∂2A

∂̟2

∂A

∂̟

)

+
1

(n2 + k2̟2)2

[

k2̟h2 − 2knh
∂A

∂̟
+
n2

̟

(
∂A

∂̟

)2
]

=
1

n2 + k2̟2

(
∂2A

∂̟2
− k2̟ − n2

n2 + k2̟2

∂A

∂̟
+

h
dh

dA
− 2kn

n2 + k2 +̟2
h

)
∂A

∂̟
(3.60)
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We now substitute this expression back into the ̟-component of the mo-
mentum balance equation and get, omitting the factor ∂A/∂̟

− 1

̟2

∂2A

∂u2
− 1

n2 + k2̟2

∂2A

∂̟2
+

k2̟2 − n2

̟(n2 + k2̟2)

∂A

∂̟
=

µ0
dp

dA
+

1

n2 + k2 +̟2
h
dh

dA
− 2kn

(n2 + k2̟2)2
h (3.61)

We can write this in a more compact form if we multiply Eqn. (3.61) by
n2 + k2̟2 and introduce the Laplace operator in the following form

∆A =
1

̟

∂

∂̟

(

̟
∂A

∂̟

)

+
1

̟2

∂2A

∂φ2
+
∂2A

∂z2

=
∂2A

∂̟2
+

1

̟

∂A

∂̟
+

1

̟2

∂u

∂φ

∂

∂u

(
∂u

∂φ

∂A

∂u

)

+
∂u

∂z

∂

∂u

(
∂u

∂z

∂A

∂u

)

=
∂2A

∂̟2
+

1

̟

∂A

∂̟
+
n2

̟2

∂2A

∂u2
+ k2

∂2A

∂u2

=
∂2A

∂̟2
+

1

̟

∂A

∂̟
+
n2 + k2̟2

̟2

∂2A

∂u2
. (3.62)

This allows us to write the left hand side of Eq. (3.61) as

−∆A+
1

̟

∂A

∂̟
+

k2̟2 − n2

̟(n2 + k2̟2)

∂A

∂̟
= −∆A+

n2 + k2̟2 + k2̟2 − n2

̟(n2 + k2̟2)

∂A

∂̟

= −∆A+
2k2̟

n2 + k2̟2

∂A

∂̟

= −∆A+∇ ln(n2 + k2̟2) · ∇A
= LA (3.63)

Then the Grad-Shafranov-equation looks like this :

LA = (n2 + k2̟2)µ0
dp

dA
+ h

dh

dA
− 2kn

n2 + k2̟2
h. (3.64)

Another way to write Eq. (3.61) in a compact form is to not multiply the
equation by n2 + k2̟2 and see that

−∇ ·
(

1

n2 + k2̟2
∇A

)

= − 1

n2 + k2̟2
∆A+

2k2̟

(n2 + k2̟2)2
∂A

∂̟

= − 1

n2 + k2̟2

(

∂2A

∂̟2

1

̟

∂A

∂̟
+
n2 + k2̟2

̟2

∂2A

∂u2

)

+
2k2̟

n2 + k2̟2

∂A

∂̟

= − 1

̟2

∂2A

∂u2
− 1

n2 + k2̟2

∂2A

∂̟2
+

2k2̟2 − n2 − k2̟2

̟(n2 + k2̟2)

∂A

∂̟

= − 1

̟2

∂2A

∂u2
− 1

n2 + k2̟2

∂2A

∂̟2
+

k2̟2 − n2

̟(n2 + k2̟2)

∂A

∂̟
(3.65)
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which is equal to the left hand side of the Eq. (3.61).
In this form the GS-equation reads

−∇ ·
(

1

n2 + k2̟2
∇A

)

= µ0
dp

dA
+

1

n2 + k2̟2
h
dh

dA
− 2kn

n2 + k2̟2
h (3.66)

This form is particularly useful to see that the two cases of translational
symmetry and rotational symmetry are only special cases of the more general
helical symmetry. We recover the case of translational symmetry for k = 0
and n = 1 and the case of rotational symmetry for k = 1 and n = 0.

Notice that the case of translational symmetry here implies ∂/∂z = 0
instead of ∂/∂y = 0 as used before in Section 3.1. We recover this case after
suitably renaming the coordinates.

3.4 The Inclusion of External Forces

So far we have not included external forces. We will now show, how this can
be done in the case of translational invariance for an external gravitational
field and in the case of rotational invariance for the case of a plasma which
is rotating. Other cases can be treated similarly.

3.4.1 External gravity in Cartesian coordinates

We assume here that the external force has a potential Ψ and can be written
as

f = −ρ∇Ψ (3.67)

with Ψ a known function of space. The force balance equation then is

j×B−∇p− ρ∇Ψ = 0. (3.68)

Again we write
B = ∇A× ey +Byey. (3.69)

But now the scalar product of Eq. (3.68) with B gives

B · ∇p = −ρB · ∇Ψ (3.70)

and the pressure will not be constant along field lines if ∇Ψ has a component
acting along B.

Physically, it is intuitively clear why this must be the case. Since the
j×B-force only acts across the field, any component of force along the field
has to be balanced by a pressure gradient along the field. But how can we
proceed now?

From the derivation of the GS-equation without external forces, we know,
that we can write

j×B =
1

µ0
{−∆A∇A− [(∇A×∇By) · ey] ey −By∇By} (3.71)
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Since neither ∇p nor ρ∇Ψ are allowed to have a y-component because of
our symmetry assumption, we again get the result that

By(x, z) = G(A(x, z)) (3.72)

and therefore

j×B =
1

µ0

(

−∆A−By
dBy
dA

)

∇A (3.73)

The force balance equation now has the form

− 1

µ0

(

∆A+By
dBy
dA

)

∇A−∇p− ρ∇Ψ (3.74)

We now use the following argument. Each of the three vector fields ∇A, ∇p
and ∇Ψ has only two components, namely in the x-z-plane. It follows that
only two of these vector fields can be linearly independent.

We now assume that ∇A and ∇Ψ are linearly independent (apart from
sets of measure zero). In the case that ∇A and ∇Ψ are linearly dependent,
we have the highly special case that the external force is everywhere per-
pendicular to B, which restricts B considerably. This special case can be
treated in the same way as the case without external forces, but leads to a
slightly different right-hand-side

−∆A = µ0

(
dp

dA
+ ρ

dΨ

dA

)

(3.75)

We then need an equation for ρ to complete the problem, e.g. the ideal gas
law with constant temperature T

p = RρT = c2sρ (3.76)

where cs = constant is the sound velocity or the adiabatic relation between
p and ρ

p = Kργ . (3.77)

Let us now return to the more general case with ∇A and ∇Ψ linearly inde-
pendent. Then we can write

∇p = pA∇A+ pΨ∇Ψ (3.78)

with functions pA and pψ as coefficients. Since

∇×∇p = 0 (3.79)

we get
∇pA ×∇A+∇pΨ ×∇Ψ = 0 (3.80)
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It is easy to verify that this equation is fulfilled if p = F (A,Ψ), pA = ∂F/∂A
and pΨ = ∂F/∂Ψ. Substituting these equations into Eq. (3.80), we get

(

∂2F

∂A2
∇A+

∂2F

∂ψ∂A
∇Ψ

)

×∇A+

(

∂2F

∂A∂Ψ
∇A+

∂2F

∂A2
∇Ψ

)

×∇Ψ =

∂2F

∂A∂Ψ
(∇Ψ×∇A+∇A×∇Ψ) = 0. (3.81)

With this general result for p, we now write the force balance equation as

[

− 1

µ0

(

∆A+By
dBy
dA

)

− ∂p

∂A

]

∇A−
(
∂p

∂Ψ
+ ρ

)

∇Ψ = 0. (3.82)

Since ∇A and ∇Ψ are linearly independent their coefficients must vanish
and we get

−∆A = µ0
∂p

∂A
+By

dBy
dA

(3.83)

∂p

∂Ψ
= −ρ. (3.84)

Obviously, to complete the problem we need to know something about
ρ. There are several ways of providing this additional information.

a) Fix ρ as a function of A and Ψ and integrate Eq. (3.84) to get p as
function of A and Ψ. The disadvantage of this approach is that it
usually leads to unphysical equations of state.

b) Assume a specific equation of state and specify the temperature as a
function of A and Ψ.

Examples:

(a) Ideal gas with p = RρT with T = T (A,Ψ) given. It follows that

∂p

∂ψ
= − p

RT
(3.85)

and integrating once we get

p = p0(A) exp

(

−
∫ Ψ

Ψ0

dΨ′

RT (A,Ψ′)

)

. (3.86)

In the special case of an isothermal ideal gas this can be written
as

p = p0(A) exp

(

−Ψ−Ψ0

RT

)

. (3.87)

This is the usual barometric formula with different base pressure
p0(A) for each field line !
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(b) Polytropic equation of state with p = Kργ withK and γ constant.
We then have

∂p

∂ψ
= −

(
p

K

)1/γ

(3.88)

leading to
∫ p

p0(A)

(
p′

K

)−1/γ

dp′ = −(Ψ−Ψ0). (3.89)

Evaluating the integral we get

Kγ

γ − 1





(
p

K

) γ−1

γ

−
(
p0(A)

K

) γ−1

γ



 = −(Ψ−Ψ0). (3.90)

Solving for p, we first obtain

(
p

K

) γ−1

γ

=

(
p0(A)

K

) γ−1

γ

− γ − 1

γ

Ψ−Ψ0

K
. (3.91)

We finally arrive at

p(A,Ψ) = K





(
p0(A)

K

) γ−1

γ

− γ − 1

γ

Ψ−Ψ0

K





γ

γ−1

. (3.92)

We notice that the expression inside the bracket could become
negative which will lead to mathematical and physical difficulties.

c) Use an equation of state plus an energy equation. This is the most
difficult case, but also the most realistic one. We can again regard T
as a function of A and Ψ, but this time unknown to us until we solve
the energy equation.

3.4.2 Centrifugal force in cylindrical coordinates

We now turn to the case of a rotating plasma. This case is important e.g.
for planetary magnetospheres likes those of Jupiter or the magnetospheres of
rotating stars. It can also be of importance in laboratory plasmas which are
heated by neutral beams, because the momentum transfer from the beam
to the plasma can cause the plasma to rotate.

A rotating plasma violates our static assumption v = 0, so in a strict
sense we are not dealing with an MHS equilibrium. However, since the
effect of pure steady rotation is simply to introduce an extra force, namely
the centrifugal force we will include this case here.

Since v = 0 we have to go back to the original MHD equations with
v non-zero but ∂/∂t = 0. We will work in cylindrical coordinates ̟, φ,
z, assume rotational invariance (∂/∂φ = 0) and purely rotational motion
around the z-axis (v = ̟Ωeφ).

The MHD equations then have the following form.
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a) Continuity equation

∇ · (ρv) = 1

̟

∂

∂φ
(̟ρΩ) = 0 (3.93)

because of axisymmetry.

b) Ohm’s law and Faraday’s law

From Faraday’s law
∇×E = 0 (3.94)

we conclude that
E = −∇Φ. (3.95)

With

B =
1

̟
∇A× eφ +Bφeφ (3.96)

(from ∇ ·B = 0) we find that

v ×B = ̟Ωeφ ×
(
1

̟
∇A× eφ +Bφeφ

)

= Ω∇A (3.97)

so that the ideal Ohm’s law

E+ v ×B = 0 (3.98)

acquires the form
−∇Φ+ Ω∇A = 0. (3.99)

Taking the curl of this equation results in

∇Ω×∇A = 0 (3.100)

leading to the conclusion that

Ω = H(A) (3.101)

i.e. the angular velocity is constant along field lines (Ferraro’s law of
isorotation). Since Ω is a function of A, we also get

−∇Φ+ Ω(A)∇A = 0 (3.102)

and conclude that the electric potential Φ is also a function of A (Φ =
K(A)) implying that the electric potential is constant along field lines.
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c) Momentum balance equation

The momentum balance equation has the form

ρ(v · ∇)v = j×B−∇p
external gravity term could be included

︷ ︸︸ ︷

(−ρ∇Ψ) . (3.103)

The aim now is to bring the v-dependent term into the form ρ∇η (with
the centrifugal potential η). The most transparent way to do this is
to write

(v · ∇)v = ∇
(
1

2
|v|2

)

− v × (∇× v). (3.104)

The first term already has the form we want, so we only need to have
a look at the second term. We get

∇× v = ∇× (̟Ωeφ)

= −̟∂Ω
∂z

e̟ +
1

̟

∂

∂̟
(̟2Ω)ez. (3.105)

and

v × (∇× v) = ̟Ωeφ ×
(

−̟∂Ω
∂z

e̟ +
1

̟

∂

∂̟
(̟2Ω)ez

)

= ̟2Ω
∂Ω

∂z
ez +Ω

∂

∂̟
(̟2Ω)e̟

= ∇(̟2Ω2)−̟2Ω
dΩ

dA
∇A. (3.106)

Putting everything together, we get

1

2
ρ∇(̟2Ω2)− ρ∇(̟2Ω2) + ρ̟2Ω

dΩ

dA
∇A =

[

− 1

µ0
∇ ·

(
1

̟2
∇A

)

− 1

µ0̟2
bφ
dbφ
dA

]

∇A−∇p (3.107)

and finally
[

− 1

µ0
∇ ·

(
1

̟2
∇A

)

− 1

µ0̟2
bφ
dbφ
dA

− ρ̟2Ω
dΩ

dA

]

∇A−∇p+ ρ∇η = 0

(3.108)
with η = ̟2Ω2/2 the centrifugal potential.

With the same arguments as before we conclude that

p = F (A, η) (3.109)

and the partial differential equations to solve are

−∇ ·
(

1

̟2
∇A

)

= µ0

(
∂p

∂A

)

η
+

1

̟2
bφ
dbφ
dA

+ µ0̟
2ρΩ

dΩ

dA
(3.110)

(
∂p

∂η

)

A

= ρ. (3.111)
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Figure 3.2: Illustration of Ferraro’s law of isorotation

Again we have to provide information on ρ in the same way as before
and to integrate the second equation first. When substituting p into
the first equation one has to keep η constant although Ω can depend
on A !

Ferraro’s law of isorotation usually restricts Ω considerably (e.g. Figure
3.2). Imagine a rigidly rotating magnetised body, e.g. a star or a planet,
which has a surface into which the field lines are frozen, i.e. Ω is fixed at
the surface of the star. Then by Ferraro’s law we have Ω(A) = Ω∗ for every
field line touching the surface in at least one point. This can cause problems
for field lines extending very far out because vφ = ̟Ω∗ will become very
large. Of course this means that the centrifugal force becomes large and the
plasma will be accelerated outwards: a plasma flow along the the field lines
starts leading e.g. to a stellar wind and the field lines become open.

3.5 Some Useful Solutions for Symmetric Systems

We have now derived the fundamental elliptic PDE’s for the three differ-
ent cases of symmetric systems. We can use these equations to calculate
equilibria. Before we actually do this some general remarks are necessary.

a) The equations still contain the unspecified functions p(A) and/or By(A)
(bφ(A), h(A)). We have to make choices which are sensible from the
physical point of view. This is usually in conflict with mathematical
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x

z

A = f3(z) A = f2(z)

A = f2(x)

∂A

∂n
=
∂A

∂z
= 0

Figure 3.3: Example of boundary conditions in Cartesian geometry

simplicity which would require e.g. to make the PDE linear. It is
for example obvious that p(A) and B2

y(A) (b2φ(A), h
2(A)) have to be

positive. This is not always ensured by some choices for p and B2
y(A)

(b2φ(A), h
2(A)). In this part of the lecture we shall assume somewhat

naively that we can prescribe p and By as we like subject to the con-
straints mentioned above.

b) We have to specify boundary conditions to complete the mathematical
problem. However, usually people take the approach to try to find any
solution of one of the PDE’s first and tailor the boundary conditions
for this solution afterwards. We will basically follow this approach,
because otherwise it is hard to find any solutions, at least if we have
a non-linear equation.

Since the equations are elliptic, the mathematically appropriate bound-
ary conditions are e.g.

• Dirichlet boundary conditions: A|boundary =known function of
space on boundary

From a physical point of view this boundary condition fixes the
point where the field line labeled ‘A’ crosses the boundary (some-
times called ‘the footpoint’). Then, specifying A on the boundary
is the same as specifying the magnetic flux distribution through
that boundary !

If p(A) and By(A) are prescribed, this also fixes p and By on the
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boundary ! This may not always be consistent with the physics
of the problem studied ! I will get back to this point at the end
of this Section.

• (Homogeneous) von Neumann boundary conditions (if imposed
on all boundaries, an extra condition is necessary to make the

solution unique):
∂A

∂n
= known function of space, e.g. 0.

This determines the angle with which the field line A intersects
the boundary because

|B× n| = |(n · ∇A)ey| = |B| sin θ (3.112)

where θ is the angle between B and n. If, for example

∂A

∂n
= 0 =⇒ B ‖ n (3.113)

then B is perpendicular to the boundary.

Before I go on to discuss specific equilibria, I would like to introduce
some widely used terminology.

a) Potential fields

Here j = 0 and we have
∇×B = 0. (3.114)

It follows that
B = ∇ϕ (3.115)

and therefore
∇ ·B = ∆ϕ = 0. (3.116)

Equation (3.116) is the reason for the name potential fields. Note that
ϕ is not identical with A in the symmetric cases, but if j = 0 we have

−∆2A = 0 (translational symmetry), (3.117)

−∇ ·
(

1

̟2
∇A

)

= 0 (rotational symmetry), (3.118)

−∇ ·
(

1

n2 + k2̟2
∇A

)

= 0 (helical symmetry). (3.119)

b) Force-free fields

This means that

j×B = 0, (3.120)
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so the other forces are negligible. It follows that

µ0j = αB, (3.121)

i.e. the current density is purely field aligned. Since

∇ · j = 1

µ0
∇ · (∇×B) = 0, (3.122)

we get

µ0∇ · j = ∇ · (αB) = B · ∇α+ α∇ ·B = B · ∇α = 0, (3.123)

implying that α is constant along magnetic field lines. If α = constant
everywhere we have the so-called constant-α force-free fields or linear
force-free fields, because as we will see, the equation determining B is
linear in this case.

3.5.1 Solutions for Translational Invariance

a) µ0jy = 0 solutions

These include potential solutions, but in the case of translational sym-
metry without external forces we could also have

jy =
∂

∂A

(

p(A) +
B2
y(A)

2µ0

)

= 0 (3.124)

implying

p(A) +
B2
y(A)

2µ0
= c2 = constant. (3.125)

We can use this equation to determine either p(A) or By(A) if the
other one is given, e.g.

By(A) = ±
√

2µ0(c2 − p(A)), (3.126)

where it must be ensured that c2 ≥ p(A) for all A ! In this special case
we have jy = 0 but the the other components of the current density
are non-zero

µ0j = ∇×B

= −∆A
︸ ︷︷ ︸

=0

ey +∇By × ey

=
dBy
dA

∇A× ey 6= 0. (3.127)
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This special case does not exist if we have external forces or in the case
of all other symmetries because then either p depends on the external
potential ψ or we have extra explicit dependencies on the coordinates
on the right hand side of the Grad-Shafranov equation.

The techniques for the solution, however, and the expressions for A
are the same whatever case we have. We can use either separation of
variables (A = g(x)h(z) in Cartesian coordinates or A = g(r)h(φ) in
polar coordinates) or complex analytic functions (A = ℜ[f(x+ iz)]) or
Green’s function techniques. All this is standard and I will not show
any examples here.

b) µ0jy = c =constant solutions

This is another case for which the Grad-Shafranov equation is linear,
namely

−∆A = c (3.128)

General solutions can be constructed by adding a potential solution A0

with −∆A0 = 0, to a particular solution of Eq. (3.128). An example
would be

A = A0 −
1

2
cx2. (3.129)

Since

µ0p(A) +
B2
y

2µ0
= cA+ d (3.130)

the solutions do only make sense if cA+ d ≥ 0.

c) µ0jy = k2A

This form of jy includes linear force-free fields. The Grad-Shafranov
equation has the form

−∆A = k2A = µ0
d

dA

(

p(A) +
B2
y(A)

2µ0

)

. (3.131)

We get linear force-free fields if p = constant, i.e.

−∆A = By
dBy
dA

= k2A. (3.132)

It follows that
B2
y = k2A2 +B2

y0. (3.133)
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Now

µ0j = ∇By × ey −∆A ey

=
dBy
dA

∇A× ey + k2A ey

=
dBy
dA

∇A× ey +By
dBy
dA

ey

=
dBy
dA

B. (3.134)

If B2
y0 = 0, we have By = ±|k|A and dBy/dA = ±|k| = α !

Solutions can be obtained for example by separation of variables. In
Cartesian coordinates we get

A = g(x)h(z) (3.135)

leading to

−hd
2g

dx2
− g

d2h

dz2
= k2 g h (3.136)

when substituted into Eq. (3.132). Dividing by g h we get

−1

g

d2g

dx2
= k2 +

1

h

d2h

dz2
= c2 (3.137)

with c2 constant. If we choose c2 to be positive the solutions are

g = g1 sin(cx) + g2 cos(cx) (3.138)

h = h1 exp(
√

c2 − k2z) + h2 exp(−
√

c2 − k2z) (3.139)

Here g1, g2, h1 and h2 are constants. In the case of linear force-free
fields, we can replace k2 by α2. For all linear equations we can su-
perpose different solutions to match boundary conditions for example.
That is one of the reasons why the linear Grad-Shafranov equations
are so popular.

d) µ0jy = λ exp(2A)

This is the first non-linear current density we investigate and is a very
popular choice for two reasons:

(a) the complete set of solutions is known explicitly (Liouville, 1853)
and the equation has particularly nice properties as conformal
invariance;
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(b) there is a physical justification for this current profile (!), be-
cause it results from a kinetic approach with Maxwellian distri-
bution functions where the particles drift in the y-direction and
the plasma is quasi-neutral. The plasma is then in local thermo-
dynamic equilibrium. This argument does only apply, however,
to a jy caused by a pressure gradient and not to magnetic shear !

So the Grad-Shafranov equation is

−∆A = λ exp(2A). (3.140)

This equation is sometimes called Liouville’s equation. The solutions
to this equation are given by

A = − ln







1 +
1

4
λ|ψ(u)|2
∣
∣
∣
∣

dψ

du

∣
∣
∣
∣







(3.141)

where u = x+iz and ψ is an analytic function, or written in a slightly
different way

λ exp(2A) =
λ

∣
∣
∣
∣

dψ

du

∣
∣
∣
∣

(

1 +
1

4
λ|ψ(u)|2

)2 . (3.142)

Notice that for λ→ 0, we have jy → 0 and

A→ ln

(∣
∣
∣
∣

dψ

du

∣
∣
∣
∣

)

, (3.143)

which is a harmonic function !

Let us first verify that A does indeed solve the PDE. It is relatively
straightforward to to this if we write

ψ(u) = g(x, z) + ih(x, z) (3.144)

with g and h satisfying the Cauchy-Riemann equations for harmonic
functions

∂g

∂x
=

∂h

∂z
(3.145)

∂g

∂z
= −∂h

∂x
. (3.146)

Then
|ψ|2 = g2 + h2 (3.147)
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and
∣
∣
∣
∣

dψ

du

∣
∣
∣
∣
=

√
(
∂g

∂x

)2

+

(
∂g

∂z

)2

= |∇g|. (3.148)

We can therefore write A as

A = − ln









1 +
1

4
λ(g2 + h2)

√
(
∂g

∂x

)2

+

(
∂g

∂z

)2









= − ln

(

1 +
1

4
λ(g2 + h2)

)

+
1

2
ln

[(
∂g

∂x

)2

+

(
∂g

∂z

)2
]

. (3.149)

Now the complex analytic function

ln

(
dψ

du

)

= ln

∣
∣
∣
∣

dψ

du

∣
∣
∣
∣+ i







arctan







ℑ
(
dψ

du

)

ℜ
(
dψ

du

)






+ 2kπ







(3.150)

and this implies that

−∆ ln

∣
∣
∣
∣

dψ

du

∣
∣
∣
∣ = −∆

1

2
ln

[(
∂g

∂x

)2

+

(
∂g

∂z

)2
]

= 0. (3.151)

So we only have to calculate the effect of Laplace’s operator onto the
first term given by

Q = − ln

(

1 +
1

4
λ(g2 + h2)

)

. (3.152)

We get

∂Q

∂x
= −

1

2
λ

(

g
∂g

∂x
+ h

∂h

∂x

)

1 +
1

4
λ(g2 + h2)

(3.153)

∂Q

∂z
= −

1

2
λ

(

g
∂g

∂z
+ h

∂h

∂z

)

1 +
1

4
λ(g2 + h2)

. (3.154)

For the second derivatives we obtain

∂2Q

∂x2
= − 1

[

1 +
1

4
λ(g2 + h2)

]2 ·

30



{

1

2
λ

[(
∂g

∂x

)2

+ g
∂2g

∂x2
+

(
∂h

∂x

)2

+ h
∂2h

∂x2

] [

1 +
1

4
λ(g2 + h2)

]

−1

4
λ2
(

g
∂g

∂x
+ h

∂h

∂x

)2
}

(3.155)

∂2Q

∂z2
= − 1

[

1 +
1

4
λ(g2 + h2)

]2 ·

{

1

2
λ

[(
∂g

∂z

)2

+ g
∂2g

∂z2
+

(
∂h

∂z

)2

+ h
∂2h

∂z2

] [

1 +
1

4
λ(g2 + h2)

]

−1

4
λ2
(

g
∂g

∂z
+ h

∂h

∂z

)2
}

. (3.156)

Putting everything together, we obtain

−∆A = −∂
2Q

∂x2
− ∂2Q

∂z2

=
1

[

1 +
1

4
λ(g2 + h2)

]2 ·

{

1

2
λ

[(
∂g

∂x

)2

+ g
∂2g

∂x2
+

(
∂h

∂x

)2

+ h
∂2h

∂x2

] [

1 +
1

4
λ(g2 + h2)

]

+

1

2
λ

[(
∂g

∂z

)2

+ g
∂2g

∂z2
+

(
∂h

∂z

)2

+ h
∂2h

∂z2

] [

1 +
1

4
λ(g2 + h2)

]

−

1

4
λ2
(

g
∂g

∂x
+ h

∂h

∂x

)2

− 1

4
λ2
(

g
∂g

∂z
+ h

∂h

∂z

)2
}

. (3.157)

Since
∂2g

∂x2
+
∂2g

∂z2
=
∂2h

∂x2
+
∂2h

∂z2
= 0, (3.158)

we get

−∆A =
1

[

1 +
1

4
λ(g2 + h2)

]2 ·

{

1

2
λ

[(
∂g

∂x

)2

+

(
∂g

∂z

)2

+

(
∂h

∂x

)2

+

(
∂h

∂z

)2
] [

1 +
1

4
λ(g2 + h2)

]

−1

4
λ2
[

g2
(
∂g

∂x

)2

+ 2gh
∂g

∂x

∂h

∂x
+ h2

(
∂h

∂x

)2

+

g2
(
∂g

∂z

)2

+ 2gh
∂g

∂z

∂h

∂z
+ h2

(
∂h

∂z

)2
]}

. (3.159)
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Using the Cauchy-Riemann equations we finally obtain

−∆A =
1

[

1 +
1

4
λ(g2 + h2)

]2 ·

{

λ

[(
∂g

∂x

)2

+

(
∂g

∂z

)2
] [

1 +
1

4
λ(g2 + h2)

]

−1

4
λ2(g2 + h2)

[(
∂g

∂x

)2

+

(
∂g

∂z

)2
]

−1

4
λ2 2gh







∂g

∂x

∂h

∂x
− ∂h

∂x

∂g

∂x
︸ ︷︷ ︸

=0







}

·

= λ

(
∂g

∂x

)2

+

(
∂g

∂z

)2

[

1 +
1

4
λ(g2 + h2)

]2

= λ exp(−2A), (3.160)

thus completing the proof that Eq. (3.141) is actually a solution of
Eq. (3.140).

We will now discuss some important special cases.

• In the first case we choose

ψ =
2√
λ
exp(

√
λu) (3.161)

implying

|ψ| = 2√
λ
exp(

√
λx) (3.162)

and ∣
∣
∣
∣

dψ

du

∣
∣
∣
∣ = 2exp(

√
λx). (3.163)

Substitution into Eq. (3.141) gives

A = − ln







1 +
λ

4

4

λ
exp(2

√
λx)

2 exp(
√
λx)







= − ln

(

exp(
√
λx) + exp(−

√
λx)

2

)

= − ln cosh
(√

λx
)

. (3.164)
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Figure 3.4: Field lines for the Harris sheet solution.

In the case By = 0 this solution is called either Harris sheet
(Harris, 1962) or (plane) sheet pinch. In this case we have

B = ∇A× ey

= −
√
λ tanh(

√
λx), (3.165)

jy =
λ

cosh2(
√
λx)

(3.166)

p = p0 +
λ

2

1

cosh2(
√
λx)

. (3.167)

As |x| → ∞ the magnetic field tends to a constant field

lim
|x|→∞

|B| =
√
λ, (3.168)

but the magnetic field lines point into opposite directions for pos-
itive and negative x. A field line plot is shown in Fig. 3.4.

• Another important case in Cartesian coordinates is given by

ψ =
2√
λ

[

δ + (1 + δ2)1/2 exp(
√
λu)

]

(3.169)

|ψ|2 =
4

λ

[

δ2 + 2δ(1 + δ2)1/2 exp(
√
λx) cos(

√
λz)

+(1 + δ2) exp(2
√
λx)

]

(3.170)
∣
∣
∣
∣

dψ

du

∣
∣
∣
∣ = 2(1 + δ2)1/2 exp(2

√
λx) (3.171)
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Substitution into Eq. (3.141) results in

A =

− ln

{

1

2(1 + δ2)1/2 exp(2
√
λx)

·
[

1 + δ2 + 2δ(1 + δ2)1/2 exp(
√
λx) cos(

√
λz) +

(1 + δ2) exp(2
√
λx)

]}

= − ln

{

(1 + δ2)1/2·
[

cosh(
√
λx) +

δ

(1 + δ2)1/2
cos(

√
λz)

]}

.(3.172)

In the limit δ → 0, we recover the Harris sheet. In the limit
δ → ∞, the factor of the cosine becomes equal to one and the ar-
gument of the logarithm is cosh(

√
λx)+cos(

√
λz), which becomes

zero for x = 0 and
√
λz = kπ (k = 0,±1,±2, . . .).

For the current density jy we get

jy =
λ

(1 + δ2)

[

cosh(
√
λx) +

δ

(1 + δ2)1/2
cos(

√
λz)

]2 , (3.173)

so jy → ∞ for δ → ∞ and x = 0 and
√
λz = kπ with k =

0,±1,±2, . . ..

This solution has been first discussed by Fadeev et al. (1965) and
Schmid-Burgk (1965). It is called periodic or corrugated sheet
pinch (sometimes also Schmid-Burgk solution). A plot of the field
line structure is shown in Fig. 3.5.

• Another important case, best discussed in polar coordinates, is
the following

ψ = 2ku (3.174)

|ψ| = 2k̟ (̟ = |u|) (3.175)
∣
∣
∣
∣

dψ

du

∣
∣
∣
∣ = 2k. (3.176)

Using these expressions in Eq. (3.141) leads to

A = − ln

(

1 + λk2̟2

2k

)

. (3.177)
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Figure 3.5: Field lines for the periodic sheet pinch solution.

For the case By = 0, p = λ exp(2A) this solution is called the Ben-
nett pinch (sometimes also called the peaked current profile) (Ben-
nett, 1934). This is an example of a so-called z-pinch for which
j = jez (though here it should be called a y-pinch). A plot of the
field line structure is shown in Fig. 3.6. In the case of the corre-
sponding force-free solution (p = constant, By =

√
λ exp(A)), we

obtain the so-called Gold-Hoyle solution (Gold and Hoyle, 1960)
with (̟, φ, y) is the slightly awkward coordinate system now)

Bφ = (∇A× ey) · eφ =

1

2
λk2̟

1 +
1

4
k2̟2

(3.178)

By =

√
λk

1 +
1

4
k2̟2

. (3.179)

Note that the Bennett pinch and the Gold-Hoyle solution depend
only on ̟. Therefore they are both translationally and rota-
tionally invariant and are also solutions of the Grad-Shafranov
equation for rotational invariance ! But notice that then Arot 6=
Acart, and B

cart
y = Brot

z = 1/̟∇Arot × eφ, whereas b
rot
φ (Arot) =

̟Bcart
φ !
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Figure 3.6: Field lines for the Bennett pinch solution.

3.5.2 Solutions for Rotational Invariance

a) µ0jφ = 0

In the case of rotational invariance these solutions are potential be-
cause

µ0jφ = µ0̟
dp

dA
+

1

̟
bφ
dbφ
dA

(3.180)

and this cannot vanish except dp/dA and dbφ/dA vanish separately.
The equation to solve is

− 1

̟

∂

∂̟

(
1

̟

∂A

∂̟

)

− 1

̟2

∂2A

∂z2
= 0. (3.181)

This is not the Laplace equation in cylindrical coordinates (ignoring
the φ derivatives) !

We can solve this equation by separation of variables. We first trans-
form the radial coordinate by

R =
1

2
̟2. (3.182)

Equation (3.181) can the be written as

2R
∂2A

∂R2
+
∂2A

∂z2
= 0. (3.183)
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Now let
A = g(R)h(z) (3.184)

and we get
2R

g

d2g

dR2
= −1

h

d2h

dz2
= −c2 = constant. (3.185)

It follows that

d2g

dR2
+

c2

2R
g = 0 (3.186)

d2h

dz2
− c2h = 0. (3.187)

The solutions to these equations are given by

g =
√
R
[

g1J1
(

c
√
2R
)

+ g2Y1

(

c
√
2R
)]

=

√

1

2
̟ [g1J1 (c̟) + g2Y1 (c̟)] (3.188)

h = h1 exp(cz) + h2 exp(−cz) (3.189)

for c2 > 0. Here g1, g2, h1 and h2 are constants and J1 and Y1 are
Bessel functions. For c2 < 0 we get

g =

√

1

2
̟ [g1I1 (|c|̟) + g2K1 (|c|̟)] (3.190)

h = h1 sin(|c|z) + h2 cos(|c|z) (3.191)

with I1 and K1 being modified Bessel functions.

Of particular importance in astrophysics are the rotationally symmet-
ric solutions in spherical coordinates r, θ and φ. Then

B =
1

r sin θ
∇A× eφ +Bφeφ (3.192)

and Eq. (3.181) becomes

− 1

r2 sin2 θ

∂2A

∂r2
− 1

r4 sin θ

∂

∂θ

(
1

sin θ

∂A

∂θ

)

= 0. (3.193)

If we introduce the new variable µ = cos θ we get

−r2∂
2A

∂r2
− (1− µ2)

∂2A

∂µ2
= 0. (3.194)

We solve this by separation of variables using

A = g(r)h(µ) (= r

=
√

1−µ2
︷ ︸︸ ︷

sin θ Aφ) (3.195)
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and get

−r
2

g

d2g

dr2
= (1− µ2)

1

h

d2h

dµ2
= −l(l + 1) (3.196)

with l integer. The equations to solve are

d2g

dr2
− l(l + 1)

r2
g = 0 (3.197)

with the solution
g = g1r

l+1 + g2r
−l (3.198)

and
d2h

dµ2
+
l(l + 1)

1− µ2
h = 0 (3.199)

with the solution

h =
√

1− µ2
[

h1P
1
l (µ) + h2Q

1
l (µ)

]

; l ≥ 1 (3.200)

with Pml (x) and Qm
l (x) being associated Legendre functions. The func-

tions Qm
l are singular at x = ±1 and therefore we assume h2 = 0 from

now on. The functions Pml (x) are polynomials defined by

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x) (3.201)

with Pl(x) the Legendre polynomial of degree l. In Eq. (3.200) l = 0
has been explicitly excluded. We can, however, study this case by
solving Eqs. (3.197) and (3.199) directly for l = 0. The solutions are
given by

g = g1r + g2 (3.202)

h = h1µ+ h2 = h1 cos θ + h2. (3.203)

We focus on the case g1 = h2 = 0 leading to

A = g2h1 cos θ (3.204)

giving

B =
1

r sin θ
∇A× eφ

=
1

r sin θ

(

−g2h1
sin θ

r
eθ × eφ

)

= −g2h1
r2

er, (3.205)

the field of a magnetic monopole !
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For l = 1 we have

P1 = µ = cos θ (3.206)

P1
1 = (−1) sin θ

d

dµ
µ = − sin θ. (3.207)

It follows that
h = h1 sin θP

1
1 = −h1 sin2 θ. (3.208)

We first discuss the case with g2 = 0. Then we have

A = −g1h1r2 sin2 θ (= −g1h1̟2 !) (3.209)

leading to

B =
1

r sin θ
∇A× eφ

= − g1h1
r sin θ

(
1

r
2r2 cos θ sin θer − 2r sin2 θeθ

)

= −2g1h1




cos θer − sin θeθ
︸ ︷︷ ︸

=ez!




 , (3.210)

so the magnetic field is constant and pointing into the z direction. The
case g1 = 0 results in

A = −g2h1
sin2 θ

r
(3.211)

and

B = − g2h1
r sin θ

(

−2 cos θ sin θ

r2
er −

sin2 θ

r2
eθ

)

= −g2h1
(

−2 cos θ

r3
er −

sin θ

r3
eθ

)

. (3.212)

To understand this expression better, we look at the vector potential
of a magnetic dipole field with the dipole moment m located at the
origin and pointing into the z direction. The vector potential is given
by

A ∝ m× x

r3

∝ |m|̟
r3

eφ

∝ |m|r sin θ
r3

eφ

∝ |m| sin θ
r2

eφ. (3.213)
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Figure 3.7: Field lines of the dipole solution.

Here |x| = r and x = ̟e̟ + zez. The vector potential is related to
the flux function by

A = r sin θAφ ∝ |m|sin
2 θ

r
. (3.214)

It follows that the flux function given in Eq. (3.211) is that of a
magnetic dipole field with the dipole moment aligned with the z-axis.
A field line plot of that is shown in Fig. 3.7.

Higher values of l give higher order multipoles like quadrupole, oc-
tupole etc.

b) µ0jφ = µ0̟p
′
1 + b2φ1/2̟

In this case the pressure is given by

p = p′1A+ p0 (3.215)

with p′1 and p0 being constant and

b2φ = b2φ1′A+ b2φ0. (3.216)

This is the case which corresponds to a constant current density in
translational symmetry, but here the current density is not constant.
It is, however, independent of A.
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We can again find solutions as superposition of potential solutions
(jφ = 0) and a particular solution of the full equation.

One solution sometimes referred to in the fusion literature is Solov’ev’s
solution (Solov’ev, 1968). This solution is given in polynomial form as

A = f1(̟)z2 + f2(̟). (3.217)

Substituting this into the Grad-Shafranov equation we obtain

− 1

̟

d

d̟

(
1

̟

df1
d̟

)

z2 − 1

̟

d

d̟

(
1

̟

df2
d̟

)

− 2

̟2
f1 = µ0̟p

′
1 +

1

2̟
b2φ1.

(3.218)
By equating the coefficients of equal powers of z on the left and on the
right hand side of this equation we get

d

d̟

(
1

̟

df1
d̟

)

= 0 (3.219)

with the solution
f1 = a1̟

2 + a2̟ + a3. (3.220)

The equation for f2 is given by

− 1

̟

d

d̟

(
1

̟

df2
d̟

)

= +
2

̟2
f1 + µ0̟p

′
1 +

1

2̟
b2φ1. (3.221)

This equation can be directly integrated using Eq. (3.220) and we get
for f2

f2 = −1

4

(

a1 +
1

2
µ0p

′
1

)

̟4 − 2

3
a2̟

3

+
1

2
a4̟

2 −
(

2a3 +
1

2
b2φ1

)(

̟2

2
ln̟ − ̟2

4

)

+ a5. (3.222)

We get Solov’ev’s solution if we set

a2 = 0 (3.223)

a3 = −1

4
b2φ1. (3.224)

The flux function A is then given by

A = a1

(

̟2 −
b2φ1
4a1

)

z2

− 1

4

(

a1 +
1

2
µ0p

′
1

)






̟4 − 2a4

a1 +
1

2
µ0p

′
1

̟2 − a5

a1 +
1

2
µ0p

′
1






. (3.225)
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By further setting

a4

a1 +
1

2
µ0p

′
1

= R2
0 (3.226)

a5

a1 +
1

2
µ0p

′
1

= R4
0 (3.227)

a1 = − µ0p
′
1

2(1 + α2)
(3.228)

b2φ1
4a1

= γ (3.229)

we finally arrive at

A = − µ0p
′
1

2(1 + α2)

[

(̟2 − γ)z2 +
α2

4
(̟2 −R2

0)
2

]

(3.230)

c) µ0jφ = ̟k21A+ k22A/̟

The Grad-Shafranov equation in this case is

− 1

̟

∂

∂̟

(
1

̟

∂A

∂̟

)

− 1

̟2

∂2A

∂z2
= k21A+

1

̟2
k22A. (3.231)

This particular case includes the axisymmetric linear force-free fields
if k1 = 0. We try separation of variables again and with

A = g(̟)h(z) (3.232)

we obtain

−̟
g

d

d̟

(
1

̟

dg

d̟

)

− k21̟
2 − k22 =

1

h

d2h

dz2
= c2. (3.233)

For c2 > we have for h the solution

h = h1 exp(cz) + h2 exp(−cz). (3.234)

and for c2 < 0 one gets

h = h1 sin(|c|z) + h2 cos(|c|z). (3.235)

The equation for g reads

1

̟

d

d̟

(
1

̟

dg

d̟

)

+

(

k22 + c2

̟2
+ k21

)

g = 0 (3.236)
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and with the transformation R = ̟2/2 becomes

d2g

dR2
+

(

k22 + c2

2R
+ k21

)

g = 0. (3.237)

The solutions of this equation are called Coulomb wave functions with
angular momentum number L = 0. These functions can be expressed
in terms of confluent hypergeometric functions (or Kummer functions)
(see Abramowitz and Stegun, 1965, , Chapter 14).

If k1 = 0 (the force-free case) the (non-singular) solution for g is given
by

g = g1̟J1(
√

k22 + c2̟). (3.238)

If c = 0 as well, the corresponding magnetic field components are given
by

Bz = g1
1

̟

∂

∂̟
[J1(k2̟)]

= g1

[
1

̟
J1(k2̟) + k2J

′
1(k2̟)

]

= g1

[
1

̟
J1(k2̟) + k2J0(k2̟)− 1

̟
J1(k2̟)

]

= g1k2J0(k2̟) (3.239)

Bφ =
bφ
̟

=
k22
̟
A = g1k

2
2J1(k2̟). (3.240)

This solution is sometimes called the reversed field pinch because Bz
reverses its direction at the first zero of J0.

For c2 > 0 and k1 = 0 one obtains another force-free solution which in
solar physics is usually called the Schatzmann solution (Schatzmann,
1965). This solution has a similar structure for g, but exponentials for
h. This solution was proposed as an early model of the magnetic fields
of sunspots.

d) Nonlinear cases

Some 1D solutions have been found, e.g. an equivalent to the Harris
sheet was discovered by Pfirsch (1962). Non-linear 2D solutions are
very difficult to find in rotational symmetry.

3.5.3 Solutions for Helical Invariance

I will not discuss any helical equilibria here, because they are only rarely
used in solar or astrophysical applications. Also, they are by no means easy
to calculate even for the linear cases.
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3.5.4 External Forces

If external forces are included the current density depends explicitly on
the coordinates and it is usually much more difficult to calculate solutions.
There are, however, some cases for which solutions are known and I shall
discuss a few, also giving the appropriate reference for further reading.

a) Translational invariance, constant gravitational force

I will also assume that we have an isothermal plasma, i.e. that T =
constant. As we have seen in Sect. 3.4.1 we can then write

p = p0(A) exp(−z/H) (3.241)

By = By(A) (3.242)

µ0jy =
∂

∂A

[

µ0p0(A) exp(−z/H) +
1

2
B2
y(a)

]

. (3.243)

We do not have to discuss the case µ0jy = 0 again, because the solu-
tions are identical to those discussed before.

If
µ0jy = µ0k1 exp(−z/H) + k2 (3.244)

(corresponding to the case of constant current density without grav-
itation) one can find solutions by adding a particular solution of the
full equation to any potential solution.

If the current density is linear in A it has the general form

µ0jy = (µ0k1 exp(−z/H) + k2)A. (3.245)

This case has been discussed for k2 = 0 by Zweibel and Hundhausen
(1982).

An interesting case for solar physics is given by If the current density
is linear in A it has the general form

µ0jy = λ exp(2A) exp(−z/H) +By
dBy
dA

(3.246)

If By = constant, the second term vanishes. Defining

2Ā = 2A− z

H
(3.247)

we can rewrite the Grad-Shafranov equation in the form

−∆Ā = λ exp(2Ā). (3.248)
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Figure 3.8: Field lines of the Kippenhahn-Schlüter solution.

This equation is Liouville’s differential equation again for Ā. A par-
ticularly well-known solution in solar physics is given by

Ā = − ln cosh(
√
λx) (Harris sheet !). (3.249)

Using the transformation to derive A, we get

A = − ln cosh(
√
λx) +

z

2H
(3.250)

and By constant. This solution has been discussed by Kippenhahn and
Schlüter (1957) as a model for the magnetic support of solar promi-
nences. A field line plot is shown in Fig. 3.8. Further solutions are
discussed in Low et al. (1983).

b) Rotational invariance, spherical geometry

Again I assume that T is constant. In this case one gets

p = p0(A) exp

(

−GMµ

kBT

1

r

)

(3.251)

with µ being the average molecular weight of the plasma. Only very
few solutions are known for this problem. Solutions with

p0 = p̄1A+ p̄0 (3.252)

have been found by Hundhausen et al. (1981) and applied to the solar
corona.

For rotating plasmas or if magnetic shear is included, no explicit solu-
tions are known (to the author at least).
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Figure 3.9: Foot point displacement d of a magnetic field line

3.6 Some Remarks about the Choices for p and By

So far we have, somewhat naively, assumed that we can prescribe the free
functions in the Grad-Shafranov equation as we like. This is, however, usu-
ally not the case. To demonstrate this I will consider a problem well-known
in solar physics.

Suppose p is constant so that we are dealing with force-free fields. We
consider the magnetic field of a coronal arcade which means that the foot
points of the magnetic field lines are both anchored in the lower boundary
(photosphere). Because By will in general not vanish the two foot points
will be displaced in the y-direction and we define the foot point displacement
d of a field line as

d = y2 − y1, (3.253)

where y1 and y2 are the y coordinates of the two foot points in the z = 0-
plane.

Since the plasma in the photosphere is much denser than the plasma
in the corona and because it is sufficiently ideal, the motions of the photo-
spheric plasma determine the positions of the foot points. In other words:
from a physical point of view we should prescribe d for all field lines and not
By ! Of course, By and d are related to each other, the question is how ?

The differential equations for any point (x, y, z) on a field line are

dx

dσ
=

Bx
|B| (3.254)
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dy

dσ
=

By
|B| (3.255)

dz

dσ
=

Bz
|B| (3.256)

with the arc-length σ along the field line defined by

B · ∇σ = |B|. (3.257)

As By = By(A) is constant along field lines, we can integrate Eq. (3.255)
from foot point 1 to foot point 2 and get

d = y2 − y1 = By(A)

σ2∫

σ1

1

|B|dσ. (3.258)

This equation provides a relation between By and d, but we can make the
meaning of the integral more obvious by introducing a new arc-length s
which runs along the projection of B onto the xz-plane, i.e. along contours
of A. This arc-length s is defined by

∇A× ey · ∇s = Bp · ∇s = |Bp| = |∇A| (3.259)

The transformation between σ and s along a field line with A = A0 is
determined by

ds

dσ
=

√
(
dx

dσ

)2

+

(
dz

dσ

)2

=

√

B2
x +B2

z

|B| =
|∇A|
|B|

∣
∣
∣
∣
∣
A=A0

. (3.260)

Using this in the expression for d we obtain

d(A0) = By(A0)

s2∫

s1

1

|∇A|

∣
∣
∣
∣
∣
A=A0

ds. (3.261)

The integral

D(A0) =

s2∫

s1

1

|∇A|

∣
∣
∣
∣
∣
A=A0

ds (3.262)

is usually called the differential flux volume (defined per unit length here).
This name can be explained as follows. The volume between two flux sur-
faces defined by A = A1 and A = A2 and the boundary, extending a distance
Ly in the invariant direction (see Fig. 3.10) is given by

V =

∫

Ω

dxdydz = Ly

∫

Ω2

dxdz = Ly

A2∫

A1

s2(A)∫

s1(A)

|J |dsdA (3.263)
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The Jacobian J of the transformation from x, z to A, s is reciprocal to
the Jacobian of the inverse transformation A, s to x, z which is easier to
calculate
∣
∣
∣
∣
∣
∣
∣

∂A

∂x

∂A

∂z
∂s

∂x

∂s

∂z

∣
∣
∣
∣
∣
∣
∣

=
∂A

∂x

∂s

∂z
− ∂A

∂z

∂s

∂x
= −Bp · ∇s = −|Bp| = −|∇A|. (3.264)

We obtain the modulus of the Jacobian determinant as

|J | = 1

|∇A| , (3.265)

giving

V = Ly

A2∫

A1

s2(A)∫

s1(A)

1

|∇A|dsdA. (3.266)

We now regard the upper limit of the A-integration as a variable and take
the derivative of V with respect to this upper limit resulting in

dV

dA
= Ly

s2(A)∫

s1(A)

1

|∇A|ds = LyD(A) ! (3.267)

This equation explains why D(A) is called the differential flux volume.
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So if we prescribe the foot point displacement d(x) on the boundary
z = 0, we basically prescribe By, but we have to solve a nasty integral
equation ! We will encounter a simpler way of imposing this sort of boundary
condition when we discuss Euler potentials but only at the expense of a far
more complicated equilibrium equation itself !

Similar problems occur in other areas of plasma physics as well, e.g. in
magnetospheric physics where one has to determine the pressure function in
some problems in a similar way as By in the case above or in fusion theory,
if one wants to prescribe the safety factor q(A) instead of bφ(A).
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Chapter 4

Non-Symmetric Systems

For non-symmetric systems a general equilibrium theory such as the Grad-
Shafranov equation does not exist. Even the very existence of non-symmetric
equilibria especially in toroidal geometry has been questioned (Grad, 1985)
and is still a matter of ongoing research. Parker (1979) has proved a “non-
existence theorem” for non-symmetric equilibria which are calculated by
adding “small” perturbations to symmetric equilibria. If generally valid,
this would of course limit the usefulness of symmetric equilibria as approxi-
mations to non-symmetric equilibria considerably. Fortunately, in his proof
Parker uses the assumption that the equilibria exist in the complete R3 and
are finite everywhere. As soon as the system has a single boundary (like e.g.
the solar surface) the theorem no longer applies !

So in 3D, we do not just face the problem of calculating equilibria, we
already have to ask ourselves whether they exist at all from a mathematical
point of view in specific situations.

4.1 Potential and Linear Force-Free Solutions

4.1.1 Potential (Current Free) Fields

As in the case of symmetric systems we get from the condition

j = 0 (4.1)

that
∇×B = 0 (4.2)

and
B = ∇Ψ. (4.3)

It follows that
∇ ·B = ∆Ψ = 0. (4.4)
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In the force balance equation we have either

∇p = 0 (without external forces) (4.5)

implying p = constant or

∇p = −ρ∇ψ (with external forces) (4.6)

with the plasma in hydrostatic equilibrium.
The basic equation to solve is Laplace’s equation

∆Ψ = 0. (4.7)

In three dimensions this can be done by separation of variables in various
coordinate systems or by using the method of Green’s functions.

In spherical coordinates for example the general solution is given by

Ψ =
∞∑

l=0

l∑

m=−l

(

almr
l + blmr

−(l+1)
)

Yml (θ, φ) (4.8)

where Yml are spherical harmonic functions defined by

Yml (θ, φ) = Pml (cos θ) exp(imφ). (4.9)

For more information about the solutions of Laplace’s equation in three
dimensions by separation of variables or Green’s functions see e.g. Morse
and Feshbach (1953a,b) or Jackson (1975).

4.1.2 Constant Current Fields

Constant current fields are not really interesting in 3D, because of the fol-
lowing arguments. Without loss of generality we can choose

j = j0ez. (4.10)

From
j · ∇p = 0 (4.11)

we get
∂p

∂z
= 0, (4.12)

i.e. p depends only on two coordinates. From

∇×B = µ0j0ez (4.13)

we can conclude that e.g.

B = ∇Φ+ µ0j0xey. (4.14)
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Substitution into the force balance equation results in

j×B = j0ez × (∇Φ+ µ0j0xey)

= ez ×∇(j0Φ)− µ0j
2
0xex

= ez ×∇(j0Φ)−∇
(
1

2
µ0j

2
0x

2
)

= ∇p. (4.15)

It follows that

−∇× (j0Φez) = ∇
(

p+
1

2
µ0j

2
0x

2
)

. (4.16)

Taking the curl of this equation gives

∇× (∇× (j0Φez)) = 0 =⇒
∇ (∇ · (Φez))− ez∆Φ = 0. (4.17)

Writing out the components of Eq. (4.17) we get

∂2Φ

∂x∂z
= 0 (4.18)

∂2Φ

∂y∂z
= 0 (4.19)

(

∂2Φ

∂x2
+
∂2Φ

∂y2

)

= 0. (4.20)

The general solution to this set of equations is

Φ(x, y, z) = Q(x, y) +R(z) (4.21)

with
∆Q = 0. (4.22)

On the other hand, Φ has to satisfy

∆Φ = ∇ ·B = 0 (4.23)

which is equivalent to
d2R

dz2
= 0 (4.24)

implying that
R = R1z +R0. (4.25)

The only component of B which can depend on z is Bz, but now we get

Bz =
∂Φ

∂z
= R1. (4.26)

So Bz is a constant and we conclude that the physical quantities depend only
on x and y. Therefore we have a translational symmetry in the z-direction.
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4.1.3 Linear Force Free Fields

For non-symmetric systems we have the same condition for force-free fields
as for symmetric systems, namely

j×B = 0. (4.27)

It follows that
µ0j = αB. (4.28)

Since
∇ · j = 0 (4.29)

α has to satisfy the condition

B · ∇α = 0. (4.30)

This condition is automatically satisfied if α is constant. One then has to
solve

∇×B = αB (4.31)

which is a linear equation for B if α is constant.
There are several different ways to tackle the solution of this equation.

For example, if we take the curl of Ampère’s law, we get

∇× (∇×B) = ∇(∇ ·B
︸ ︷︷ ︸

=0

)−∆B = α∇×B = α2B, (4.32)

so we have to solve the vector Helmholtz equation

∆B+ α2B = 0. (4.33)

We could now solve this equation directly either by separation of variables
or by Green’s function techniques. The problem is to find a solution which
satisfies the condition ∇ · B = 0. We will use a different approach which
guarantees ∇ ·B = 0 from the outset.

Since ∇ ·B = 0 we can represent B by a vector potential A

B = ∇×A, (4.34)

but again this is not very useful unless we gauge A in a convenient way, e.g.
using the Coulomb gauge

∇ ·A = 0 (4.35)

Note that this still does not fix A completely, because we could define A′ =
A + ∇Φ with ∆Φ = 0 satisfying the same gauge condition and giving the
same magnetic field B.

Although A is a three component vector field, it is clear that the gauge
condition ∇ ·A = 0 leaves only two components independent. This is true
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whatever gauge we choose, so in principle it must be possible to express B
by two scalar functions T and P representing the two degrees of freedom of
A (or respectively B).

Suppose we choose as one of these two functions the component of A
along a constant unit vector c, i.e.

T = c ·A. (4.36)

The other two components of A should be perpendicular to c and derivable
from a single scalar function P . we can fulfill these two conditions by

A− (c ·A)c = ∇P × c = ∇× (Pc) (4.37)

so that
A = ∇× (Pc) + Tc. (4.38)

Note that this does not in general satisfy the Coulomb gauge condition. In
Cartesian coordinates this form of A can be used for arbitrary c and in that
case we get

B = ∇×∇× (Pc) +∇× (Tc). (4.39)

The use of the letters P and T is motivated by the name tangential compo-
nent, because the second term is tangential to any plane perpendicular to
c, and parallel component because the first term is parallel to c.

But P and T are not unique. We get the same magnetic field B from
another set of functions P ′ = P +Φ and T ′ = T +Ψ, if

∇×∇× (Φc) +∇× (Ψc) = 0 =⇒
∇(∇ · (Φc))− c∆Φ+∇Ψ× c = 0 (4.40)

Let us now take c = ez without loss of generality. Then the z-component of
the gauge condition (4.40) is

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 (4.41)

with the solution
Φ = ℜ(f(x+ iy, z)) (4.42)

with f(u, z) being an analytic function of u = x + iy. The other two com-
ponents of the gauge condition are

∇2Ψ× ez +∇2
∂Φ

∂z
= 0 (4.43)

where ∇2 = ex∂/∂x+ ey∂/∂y. Now ∂Φ/∂z is also an analytic function and
the two components of the gauge condition are

−∂Ψ
∂y

=
∂

∂x

(
∂Φ

∂z

)

(4.44)

∂Ψ

∂x
=

∂

∂y

(
∂Φ

∂z

)

. (4.45)
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These are the Cauchy-Riemann equations for Ψ and ∂Φ/∂z and we conclude
that

Ψ = −ℑ
(
∂f

∂z

)

. (4.46)

So Φ and Ψ are determined up to an arbitrary analytic function f(x+iy, z).
We will now use this result to derive the equations that P and T have

to satisfy in the case of linear force-free fields. Because

∇×B = ∇× [∇(∇ · (Pez))− ez∆P ] +∇×∇× (Tez)

= ∇× (−ez∆P ) +∇×∇× (Tez)

= ∇× (∇× (αPez)) +∇× (αTez) = αB (4.47)

we get

−∇× [(αT +∆P )ez] +∇× {∇× [(T − αP )ez]} = 0. (4.48)

This is the same equation as for the gauge functions Φ and Ψ so that we
can set

−αT −∆P = ℑ
(
∂f

∂z

)

(4.49)

T − αP = ℜ(f). (4.50)

The most convenient gauge is obviously f = 0 with the result

T = αP (4.51)

∆P − α2P = 0. (4.52)

We have replaced the vector Helmholtz equation by a scalar Helmholtz equa-
tion and we do not have to pay attention to the solenoidal condition for B.

The basic task is now to solve Eq. (4.52) under suitable boundary con-
ditions. We will usually rather impose these boundary conditions on B than
an P . A typical example in solar physics is that we solve for B (P ) in the
half space z ≥ 0 with Bz(x, y, 0) given. If we do not want to enclose the
system in a finite box, we would typically impose the condition that B goes
to zero at infinity. We can then write P as a Fourier integral in x and y
because it is bounded as x2 + y2 goes to infinity

P (x, y, z) =

∞∫

−∞
dkx

∞∫

−∞
dkyP̃ (kx.ky, z)e

i(kxx+kyy). (4.53)

Substituting this expression into Eq. (4.52) we see that P̃ obeys the equation

d2P̃

dz2
+ (α2 − k2)P̃ = 0 (4.54)
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with k2 = k2x + k2y . The solution to this equation is given by

k2 < α2 : P̃ = P̃1 sin(
√
α2 − k2z) + P̃2 cos(

√
α2 − k2z)

k2 > α2 : P̃ = P̃3 exp(
√
k2 − α2z) + P̃4 exp(−

√
k2 − α2z)

. (4.55)

By using the condition that P should vanish for z → ∞, we can only dis-
card the exponentially growing solution, but we cannot discard any of the
solutions for k2 < α2 because the character of these solutions for z → 0 will
only become obvious after the kx, ky integration has been carried out.

I would like to remark at this point that although in the solar physics
literature you will find mainly solutions which are periodic in x and y one
can represent any non-periodic function with the suitable properties by a
Fourier integral.

Using the expressions for P̃ we can write the general solution for P as

P (x, y, z) =

∫∫

k2>α2

dkxdkyP̃4(kx, ky) exp(−
√

k2 − α2z) exp[i(kxx+ kyy)]

+

∫∫

k2≤α2

dkxdky
[

P̃1(kx, ky) sin(
√

α2 − k2z)

+P̃2 cos(
√

α2 − k2z)
]

exp[i(kxx+ kyy)]. (4.56)

This expression is not very compact and it can be written in a more useful
form in cylindrical coordinates ̟, φ, z with ̟2 = x2 + y2, x = ̟ cosφ, y =
̟ sinφ. We can either solve the original equation in cylindrical coordinates
or transform the integrals directly. Both ways are instructive, but we choose
the second possibility.

We start by introducing polar coordinates in the kx, ky plane by defining

kx = k sin θ (4.57)

ky = k cos θ. (4.58)

With this definition we get

exp[i(kxx+ kyy)] = exp[ik̟(sin θ cosφ+ cos θ sinφ)]

= exp[ik̟ sin(θ + φ)]. (4.59)

Now

exp(iξ sinα) =
∞∑

n=−∞
exp(inα)Jn(ξ), (4.60)

with Jn(x) a Bessel function, so we obtain

exp(ikxx+ ikyy) =
∞∑

n=−∞
exp[in(θ + φ)]Jn(k̟). (4.61)
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Figure 4.1: Integration domain in the kx, ky plane.

When changing the integration variables from kx, ky to k, θ, we have to pay
attention to the domain of integration as sketched in Fig. 4.1. If we do that,
we obtain

∫∫

k2>α2

dkxdkyP̃4(kx, ky) exp(−
√

k2 − α2z) exp[i(kxx+ kyy)]

=

∞∫

α

dk k

2π∫

0

dθP̃4(k sin θ, k cos θ) exp(−
√

k2 − α2z)

∞∑

n=−∞
exp[in(θ + φ)]Jn(k̟)

=
∞∑

n=−∞
exp(inφ)

∞∫

α

dk k exp(−
√

k2 − α2z)Jn(k̟)

2π∫

0

dθP̃4(k sin θ, k cos θ) exp(inθ)

︸ ︷︷ ︸

=An(k)/k

=
∞∑

n=−∞
exp(inφ)

∞∫

α

dk An(k) exp(−
√

k2 − α2z)Jn(k̟). (4.62)
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In a similar way we get for the second integral

∞∫

−∞
dkx

√
α2−k2∫

−
√
α2−k2

dky
[

P̃1(kx, ky) sin(
√

α2 − k2z)+

P̃2 cos(
√

α2 − k2z)
]

exp[i(kxx+ kyy)]

=
∞∑

n=−∞
exp(inφ)

α∫

0

dk
[

Bn(k) cos(
√

α2 − k2z)+

Cn(k) sin(
√

α2 − k2z)
]

Jn(k̟). (4.63)

This is the same expression as given in Chiu and Hilton (1977) (note that
their expression (5) contains a typo; the lower limit of the first integral
should be α, not 0).

We now want to prescribe Bz(x, y, 0) = Bz(̟,φ, 0) and calculate the
functions An(k), Bn(k) and Cn(k) from this boundary condition. It turns
out that only An and Bn are fixed in this way. One needs additional infor-
mation to fix Cn. By evaluating Bz from

B = ∇× [∇× (Pez)] + α∇× (Pez) (4.64)

we get

Bz = −∂
2P

∂x2
− ∂2P

∂y2
=
∂2P

∂z2
+ α2P (4.65)

where we have used Eq. (4.52) in the second equality. It follows that

Bz(r, φ, 0) =
∞∑

n=−∞
exp(inφ)

{

∞∫

α

dk An(k)(k
2 − α2)

=1
︷ ︸︸ ︷

exp(−
√

k2 − α20) Jn(k̟)

+

α∫

0

dkBn(k)[−(α2 − k2)

=1
︷ ︸︸ ︷

cos(
√

α2 − k20)]Jn(k̟)

+

α∫

0

dkCn(k)[−(α2 − k2)

=0
︷ ︸︸ ︷

sin(
√

α2 − k20)]Jn(k̟)

+

∞∫

α

dk An(k)α
2)

=1
︷ ︸︸ ︷

exp(−
√

k2 − α20) Jn(k̟)

+

α∫

0

dkBn(k)α
2

=1
︷ ︸︸ ︷

cos(
√

α2 − k20) Jn(k̟)
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+

α∫

0

dkCn(k)α
2

=0
︷ ︸︸ ︷

sin(
√

α2 − k20) Jn(k̟)

}

(4.66)

leading finally to

Bz(r, φ, 0) =
∞∑

n=−∞
exp(inφ)

{ ∞∫

α

dk k2An(k)Jn(k̟)

+

α∫

0

dkk2Bn(k)Jn(k̟)

}

. (4.67)

So Cn(k) cannot be determined by this boundary condition ! We now have
to invert the equation above to determine An(k) and Bn(k) from Bz(̟,φ, 0).
We will need a few useful equations to be able to carry this out. In particular
we will need the completeness relations for the Bessel functions

∞∫

0

dxxJm(λx)Jm(λ
′x) =

1

λ′
δ(λ′ − λ) (4.68)

and for exp(inφ)

∫ 2π

0
dφ exp(inφ) exp(−imφ) = 2πδnm. (4.69)

The strategy is the following.

a) Multiply Eq. (4.67) by Jm(k
′) exp(−imφ).

b) Integrate over
∫∞
0 d̟̟

∫ 2π
0 .

With this strategy we obtain

∞∫

0

d̟̟

2π∫

0

dφ exp(−imφ)Jm(k
′̟)Bz(̟,φ, 0)

=

∞∫

0

d̟̟

2π∫

0

dφ

( ∞∑

n=−∞
exp(inφ) exp(−imφ)

)

[ ∞∫

α

dk k2An(k)Jn(k̟)Jm(k
′̟)

+

α∫

0

dkk2Bn(k)Jn(k̟)Jm(k
′̟)

]

59



=
∞∑

n=−∞

2π∫

0

exp(inφ) exp(−imφ) dφ

︸ ︷︷ ︸

=2πδnm






∞∫

α

dk k2An(k)











∞∫

0

d̟̟Jn(k̟)Jm(k
′̟)

︸ ︷︷ ︸

=δ(k′−k)/k′











+

α∫

0

dkk2Bn(k)











∞∫

0

d̟̟Jn(k̟)Jm(k
′̟)

︸ ︷︷ ︸

=δ(k′−k)/k′

















= 2π
[
k′Am(k

′)Θ(k′ − α) + k′Bm(k
′)Θ(α− k′)

]
. (4.70)

Renaming k′ as k again, we get

2π [kAm(k)Θ(k − α) + kBm(k)Θ(α− k)] =
∞∫

0

d̟̟

2π∫

0

dφ exp(−imφ)Jm(k
′̟)Bz(̟,φ, 0) (4.71)

or

k > α : Am(k) =
1

2πk

∞∫

0
d̟̟

2π∫

0
dφ exp(−imφ)Jm(k̟)Bz(̟,φ, 0)

k ≤ α : Bm(k) =
1

2πk

∞∫

0
d̟̟

2π∫

0
dφ exp(−imφ)Jm(k̟)Bz(̟,φ, 0)

.

(4.72)
Since α corresponds to an inverse length scale Lα, say,

• Am represents the small scale features of the boundary data Bz: k > α
=⇒ Lk < Lα.

• Bm represents the large scale features of the boundary data Bz: k ≤ α
=⇒ Lk ≥ Lα.

We can now substitute these expressions for Am and Bm back into the first
two terms of our expression for P and get

∞∑

n=−∞
exp(inφ)

[ ∞∫

α

dkAn(k) exp(−
√

k2 − α2z)Jn(k̟)+

α∫

0

dkBn(k) cos(
√

α2 − k2z)Jn(k̟)

]
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=
∞∑

n=−∞
exp(inφ)

{ ∞∫

α

dk

[

1

2πk

∞∫

0

d̟′̟′
2π∫

0

dφ′ exp(−inφ′)Jn(k̟
′)Bz(̟

′, φ′, 0)

]

exp(−
√

k2 − α2z)Jn(k̟)
α∫

0

dk

[

1

2πk

∞∫

0

d̟′̟′
2π∫

0

dφ′ exp(−inφ′)Jn(k̟
′)Bz(̟

′, φ′, 0)

]

cos(
√

α2 − k2z)Jn(k̟)

}

. (4.73)

Now ∞∑

n=−∞
exp(inφ) exp(inφ′)Jn(k̟)Jn(k̟

′) = J0(kR) (4.74)

with

R2 = (x− x′)2 + (y − y′)2 = ̟2 +̟′2 − 2̟̟′ cos(φ− φ′). (4.75)

If we denote the first two terms of P by P1, we can write

P1(̟,φ, z) =
1

2π

∞∫

0

d̟′̟′
2π∫

0

dφ′ G1(̟,φ, z;̟
′, φ′, 0)Bz(̟

′, φ′, 0) (4.76)

with

G1(̟,φ, z;̟
′, φ′, 0) =

∞∫

α

dk
1

k
J0(kR) exp(−

√

k2 − α2z)

+

α∫

0

dk
1

k
J0(kR) cos(

√

α2 − k2z). (4.77)

We can derive the contribution to B resulting from P1 and therefore from
Bz by calculating

B = ∇×∇(P1ez) + α∇P1 × ez

= ∇∂P1

∂z
− ez∆P1 + α

(
∂P1

∂y
ex −

∂P1

∂x
ey

)

. (4.78)

Thus we obtain

Bx1 =
∂2P1

∂x∂z
+ α

∂P1

∂y
(4.79)

By1 =
∂2P1

∂y∂z
− α

∂P1

∂x
(4.80)

Bz1 = −∂
2P1

∂x2
− ∂2P1

∂y2
=
∂2P1

∂z2
+ α2P1. (4.81)
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To evaluate these formulae we need the derivatives of the Green’s function
G1. Using Eq. (4.77) we get

∂G1

∂x
=

∞∫

α

dk
1

k
k
∂R

∂x
J′0(kR) exp(−

√

k2 − α2z)

+

α∫

0

dk
1

k
k
∂R

∂x
J′0(kR) cos(

√

α2 − k2z)

= −x− x′

R

[ ∞∫

α

J1(kR) exp(−
√

k2 − α2z) +

α∫

0

dkJ1(kR) cos(
√

α2 − k2z)

]

(4.82)

∂G1

∂y
= −x− x′

R

[ ∞∫

α

J1(kR) exp(−
√

k2 − α2z)+

α∫

0

dkJ1(kR) cos(
√

α2 − k2z)

]

. (4.83)

Introducing

Γ̄ = −
∞∫

α

dkJ1(kR) exp(−
√

k2 − α2z)−
α∫

0

dkJ1(kR) cos(
√

α2 − k2z) (4.84)

we get

Bx1 =
1

2π

∞∫

0

d̟′̟′
∫

dφ′
[

x− x′

R

∂Γ̄

∂z
+ α

y − y′

R
Γ̄

]

Bz(̟
′, φ′, 0) (4.85)

By1 =
1

2π

∞∫

0

d̟′̟′
∫

dφ′
[

y − y′

R

∂Γ̄

∂z
− α

x− x′

R
Γ̄

]

Bz(̟
′, φ′, 0) (4.86)

Bz1 = − 1

2π

∞∫

0

d̟′̟′
∫

dφ′
[
∂

∂x

(
x− x′

R
Γ̄

)

+

∂

∂y

(
y − y′

R
Γ̄

)]

Bz(̟
′, φ′, 0)

= − 1

2π

∞∫

0

d̟′̟′
∫

dφ′
[

x− x′

R

∂Γ̄

∂x
+
y − y′

R

∂Γ̄

∂y

+
R− (x− x′)2

1

R
R2

Γ̄ +
R− (y − y′)2

1

R
R2

Γ̄

]

Bz(̟
′, φ′, 0)
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= − 1

2π

∞∫

0

d̟′̟′
∫

dφ′
[

x− x′

R

∂Γ̄

∂x

+
y − y′

R

∂Γ̄

∂y
+

Γ̄

R

]

Bz(̟
′, φ′, 0). (4.87)

If we introduce the angle Θ by defining

x− x′ = R cosΘ (4.88)

y − y′ = R sinΘ, (4.89)

we get
∂Γ̄

∂R
=
∂x

∂R

∂Γ̄

∂x
+
∂y

∂R

∂Γ̄

∂y
= cosΘ

∂Γ̄

∂x
+ sinΘ

∂Γ̄

∂y
. (4.90)

Using this in the expression for Bz1 we obtain

Bz1 = − 1

2π

∞∫

0

d̟′̟′
∫

dφ′
(

∂Γ̄

∂R
+

Γ̄

R

)

Bz(̟
′, φ′, 0). (4.91)

The form of Γ̄ we have derived so far is a little bit inconvenient because it
still involves an integration over k. Thererfore, we need to derive a closed
form for Γ̄ in the following way:

Γ̄ =

∞∫

α

dk (−J1(kR))
︸ ︷︷ ︸

=
1

R

dJ0
dk

exp(−
√

k2 − α2z)+

α∫

0

dk (−J1(kR))
︸ ︷︷ ︸

=
1

R

dJ0
dk

cos(
√

α2 − k2z)

=
1

R

[

exp(−
√

k2 − α2z)J0(kR)
]∞

k=α

+
z

R

∞∫

α

dk
k√

k2 − α2
exp(−

√

k2 − α2z)J0(kR)

+
1

R

[

cos(
√

α2 − k2z)J0(kR)
]α

k=0

− z

R

α∫

0

dk
k√

α2 − k2
sin(

√

α2 − k2z)J0(kR)

=
1

R
[−J0(αR) + J0(αR)− cos(αz)] +
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z

R





∞∫

α

dk
k√

k2 − α2
exp(−

√

k2 − α2z)J0(kR)−

α∫

0

dk
k√

α2 − k2
sin(

√

α2 − k2z)J0(kR)



 . (4.92)

Now we use the following identity for the integral part citep[can be worked
out from][, p. 416, Eq. (4)]watson :

k∫

α

dk
k exp(−

√
k2 − α2z)√

k2 − α2
J0(kR)−

α∫

0

dk
k sin(

√
α2 − k2z)√

α2 − k2
J0(kR) =

cos(αρ)

ρ

(4.93)
with ρ2 = R2 + z2. So we finally find

Γ̄ =
z

Rρ
cos(αρ) − cos(αz)

R
. (4.94)

With this Γ̄ we can easily work out what the contribution of G1 to the
different components of B is. From the integrals we can then work out B

given Bz on the boundary.
We have not yet discussed the contribution of the third term. This turns

out to be fairly difficult. It would be most natural to fix Cn by imposing the
value of another component of B on the lower boundary. This is, however,
very difficult because Cn cannot be calculated as simply as An and Bn from
either Bx or By.

Chiu and Hilton (1977) suggest to impose the angle

tan δ(x, y, 0) =
By(x, y, 0)

Bx(x, y, 0)
(4.95)

as additional information. More recently several authors have suggested to
minimise the deviation of the calculated field from the measured field on
the photosphere to determine Cn (and eventually α !) (Amari et al., 1997;
Wheatland, 1999). To my knowledge, nobody has ever calculated equilibria
which include the Cn-term so far (Lothian and Browning, 1995, for example
neglect the Cn contribution).

What about the third field component ? Once we have fixed two com-
ponents of B the condition ∇ · B = 0 fixes the third. If α would not be
constant we would have additional freedom but that problem is even more
difficult to solve.

But here the problem is even worse because the Cn only represent large-
scale contributions to B. So we cannot simply just Bx or By which might be
determined by observations, but only the large scale part of them because
the small scale contributions is alreadt completely determined by imposing
Bz !
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This is an example of an ill-posed problem. The well-posed problem
would be the one with n × B prescribed on the boundary (see e.g. Morse
and Feshbach, 1953b, , Chapter 13). The problem is less dramatic if we
enclose the system in a finite box and prescribe the normal component of B
on all boundaries.

This is presently the state-of-the art in 3D force-free fields in general.
Apart from laminated force-free solutions only very few other 3D force-free
solutions are known (Low and Lou, 1990).

4.2 Euler Potentials

For symmetric systems we have been able to formulate the equilibrium prob-
lem in terms of a flux function A. The natural question is whether there
is a similar formulation for the 3D non-symmetric case. Such a formulation
does actually exist and it uses Euler potentials (also called a Clebsch repre-
sentation) for the magnetic field B. As in the symmetric case we start with
an expression for B which satisfies ∇ ·B = 0 automatically.

With the Euler potentials α and β, we can write

B = ∇α×∇β = ∇× (α∇β) (matched Euler potentials) (4.96)

or

B = f(α′, β′)∇α′ ×∇β′ (unmatched Euler potentials) (4.97)

with an arbitrary function f(x, y). Before we investigate how this is related
to the flux function of symmetric systems, we first formulate the equilibrium
problem in terms of Euler potentials. We will directly deal with the case
including external gravitation. The case without external force follows as a
special case.

We start with the force balance equation and substitute the Euler po-
tential representation for B

j×B−∇p− ρ∇Ψ = j× (∇α×∇β)−∇p− ρ∇Ψ

= (j · ∇β)∇α− (j · ∇α)∇β −∇p− ρ∇Ψ

= 0. (4.98)

As in the symmetric case, ∇α, ∇β and ∇Ψ represent three linearly inde-
pendent vector fields and we can split the force balance equation into three
components along ∇α, ∇β and ∇Ψ :

j · ∇β −
(
∂p

∂α

)

β,Ψ
= 0 (4.99)

−j · ∇α−
(
∂p

∂β

)

α,Ψ

= 0 (4.100)

−
(
∂p

∂Ψ

)

α,β
− ρ = 0. (4.101)

65



With
µ0j = ∇×B = ∇× (∇α×∇β) (4.102)

we get

∇β · ∇ × (∇α×∇β)−
(
∂p

∂α

)

β,Ψ
= 0 (4.103)

−∇α · ∇ × (∇α×∇β)−
(
∂p

∂β

)

α,Ψ

= 0 (4.104)

−
(
∂p

∂Ψ

)

α,β
= ρ. (4.105)

As in the symmetric case we will have to supply information about the
thermodynamics of the problem to solve the third equation.

The resulting partial differential equations for α and β are a system of
non-linear coupled second order equations. Note that even the differential
operators are non-linear. Also this system of equations is not of a unique
type in terms of elliptic, hyperbolic or parabolic, but of mixed type. From a
mathematical point of view it is not clear what a well-posed problem would
be.

We have formulated the mathematical problem in terms of Euler poten-
tials, but what are they and what are their properties ? First of all, from
their definition we get directly that

B · ∇α = B · ∇β = 0, (4.106)

so α and β are constant along field lines. This means that we can use α and β
to label field lines. A surface α = α0 = constant is a flux surface consisting of
magnetic field lines and the same is true for the surfaces β = β0 = constant.
The intersection of the two surfaces defines a field line with α = α0 and
β = β0. These flux surfaces are not unique, because any surface consisting of
field lines is a flux surface. This is reflected by the fact that Euler potentials
are not unique for a given magnetic field B but can be gauged, i.e. the same
magnetic field can be represented by different Euler potentials.

The major disadvantage of Euler potentials, apart from the complexity
of the mathematical equations is that they do not always exist globally for
a given magnetic field B. What does this mean ?

We can always find Euler potentials α and β which represent the mag-
netic field correctly locally, i.e. close to a fixed location r0. However, in 3D
we can only guarantee that the same Euler potentials represent the mag-
netic field everywhere, i.e. also away from r0 (i.e. globally), if a) the domain
contains one surface which each field line intersects only once and if b) the
magnetic field does not have any null points (B = 0) inside the domain, or
if the magnetic field has a vector potential A for which A ·B = 0 (Rosner
et al., 1989).
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Condition a) makes Euler potentials more or less useless for non-symmetric
equilibria in tori and condition b) can cause difficulties if null points exist
inside the considered domain as is often the case in models of coronal mag-
netic fields. The reason for this is that the magnetic field lines tend to be
‘chaotic’, i.e. they do usually not define smooth magnetic surfaces. The
equations for field lines

dr

dτ
=

B

|B| (4.107)

can be regarded as describing a dynamical system and the methods of dy-
namical system theory can be applied to investigate the behaviour of field
lines.

The second possible condition under which global Euler potentials can
be shown to exist has the consequence that the total magnetic helicity H =
∫

V A ·BdV of such fields vanishes.

4.2.1 Euler Potentials in Symmetric Systems

Euler potentials are sometimes also useful for symmetric systems. If we
recall the expression for the magnetic field in terms of a flux function and
compare to the matched Euler potential form in 3D, we see that (in Cartesian
coordinates for simplicity)

Bsymm = ∇A× ey +Byey; A = A(x, z), By = By(x, z)(4.108)

BEuler = ∇α×∇β. (4.109)

If we choose β = y + β̃(x, z) and assume that α = α(x, z) we get

BEuler = ∇α×∇(y + β̃) = ∇α× ey +∇α×∇β̃
︸ ︷︷ ︸

‖ ey

. (4.110)

This shows that we can identify α with A and ∇α × ∇β̃ with Byey for
symmetric systems. Note that β̃ is not constant along field lines.

The equilibrium equations for the symmetric Euler potentials reduce to

∇(β̃ + y) · ∇ × (∇α× ey +∇α×∇β̃) =

(
∂p

∂α

)

Ψ
(4.111)

−∇α · ∇ × (∇α× ey +∇α×∇β̃) = 0 (4.112)

because p may not depend on y and so it cannot depend on β and thus on
β̃. We simplify the equilibrium equations and write

∇(β̃ + y) ·






−∆αey +∇× (

Byey
︷ ︸︸ ︷

∇α×∇β̃)







=
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Figure 4.2: Connection between foot point displacement d and Euler poten-
tials.

(ey · ∇β̃
︸ ︷︷ ︸

=0

+1)(−∆α) + (∇β̃ + ey) · ∇By × ey =

−∆α+∇β̃ · ∇ × (∇α×∇β̃) =

(
∂p

∂α

)

Ψ
(4.113)

and in the same way for the second equation

−∇α · ∇ × (∇α×∇β̃) = 0, (4.114)

which means nothing else but

(∇α× ey) · ∇By = 0 =⇒ By = By(α). (4.115)

The formulation of a symmetric equilibrium problem in terms of Euler po-
tentials leads to a set of equations which is far more complicated than the
respective Grad-Shafranov equation. However, some boundary conditions
can be formulated much more easily when we use Euler potentials. Let us
look briefly at the case of a magnetic arcade with prescribed foot point dis-
placement d. As we have seen in Section 3.6 we need to use a nasty integral
relation between d andBy(A) if we use Grad-Shafranov theory. With the Eu-
ler potentials, d can be prescribed much easier. Since β(x, y, z) = y+ β̃(x, z)
is constant along field lines, β must have the same value at both foot points
of an arcade field line (see Fig. 4.2), i.e.

β(x2, y2, 0) − β(x1, y1, 0) = y2 + β̃(x2, 0) − y1 − β̃(x1, 0) = 0. (4.116)
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From this equation we can derive that

d = y2 − y1 = −
(

β̃(x2, 0)− β̃(x1, 0)
)

. (4.117)

Thus we can prescribe the footpoint displacement along a field line by im-
posing the correct boundary conditions on β̃ !

4.2.2 Laminated Equilibria

A special class of analytical solutions using Euler potentials are the so-called
laminated equilibria. They are non-symmetric extensions of the symmetric
equilibria with the B-field written as

B = ∇α×∇β = ∇α×∇y (4.118)

with β = y but α = α(x, y, z). The B-field has no y-component and the
field lines are confined to planes of constant y. That explains the name
‘laminated equilibria’.

The equilibrium equations in this case are given by (neglecting external
forces for simplicity)

−∆2α = µ0

(
∂p

∂α

)

y
(4.119)

∂

∂y

{

p+
1

2µ0

[(
∂α

∂x

)2

+

(
∂α

∂z

)2
]}

= 0 (4.120)

with

∆2 =
∂2

∂x2
+

∂2

∂z2
. (4.121)

Note that the y-derivative in Eq. (4.120) is the total y-derivative, not the
y-derivative at constant α !

The second equation simply states that the total pressure pT = p +
|B|2/2µ0 does not vary in the y-direction. Similar equations can be derived
for other coordinate systems replacing β = y by the appropriate condition.

Solutions for the Cartesian case have been found for

p(α, y) = p1(y)α+ p0(y) (4.122)

and
p(α, y) = p2(y)α

2 + p0(y). (4.123)

The most complete discussion has been given by Kaiser and Salat (1997).
Force free laminated solutions can also be found for Cartesian coordi-

nates and spherical coordinates (for a discussion see Low, 1988b,a).
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4.3 Other Approaches

As the more or less only systematic 3D equilibrium theory similar to the
Grad-Shafranov theory in 2D has so many difficulties, it is natural to try
other ad hoc approaches to obtain solutions. I will here present one such
approach which has been studied intensively by B. C. Low (Low, 1985;
Bogdan and Low, 1986; Low, 1991, 1992, 1993a,b) with a few additions by
Neukirch (1995, 1997a,b); Neukirch and Rastätter (1999). I will present the
theory in Cartesian coordinates with constant external gravitational force.
A similar treatment can be carried out in spherical coordinates. I will not
follow the approach of Neukirch (1995), but that of Neukirch and Rastätter
(1999) because it is more transparent, especially after our discussion of linear
force-free fields.

The first assumption we make is that the current density j has the fol-
lowing form

µ0j = αB+∇× (F∇Ψ)

= αB+∇(gF ) × ez (4.124)

where Ψ = gz has been used, α is assumed to be constant and F is an
arbitrary function. As in the linear force-free case, we write the magnetic
field B as

B = ∇× [∇× (Pez)] +∇× (Tez). (4.125)

Taking the curl of this expression for B and equating it to Eq. (4.124), we
obtain

∇×B = ∇× (−ez∆P ) +∇× [∇× (Tez)]

= ∇× [∇× (αPez)] +∇× (αTez) +∇× (gFez). (4.126)

We can rearrange the last equation into

∇× [−ez(∆P + αT + gF )] +∇× {∇× [(T − αP )ez ]} = 0. (4.127)

Just as in the linear force-free case we can solve this equation by

T = αP (4.128)

∆P + α2P + gF = 0. (4.129)

Obviously, the Helmholtz equation of the linear force-free case has been
replaced by a similar equation with one additional term. We now have to
be a bit more specific about this term.

Therefore we have a look at the force balance equation. For the Lorentz
force term we get

j×B =
1

µ0
(∇F ×∇Ψ)×B

=
1

µ0
[(B · ∇F )∇Ψ− (B · ∇Ψ)∇F ]. (4.130)
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Substituting this into the force balance equation results in

1

µ0
(B · ∇F − µ0ρ)∇Ψ− 1

µ0
(B · ∇Ψ)∇F −∇p = 0 (4.131)

and we conclude that
p = p(F,Ψ). (4.132)

Using this relation in the force balance equation, we obtain
(
∂p

∂F

)

Ψ
= − 1

µ0
B · ∇Ψ (4.133)

ρ = −
(
∂p

∂Ψ

)

F
+

1

µ0
B · ∇F. (4.134)

To be able to get analytical solutions we make a further assumption, namely

− 1

µ0
B · ∇Ψ = − 1

µ0

1

κ(Ψ)
F (4.135)

equivalent to

F = κ(Ψ)B · ∇Ψ =
1

g
ξ(z)Bz (4.136)

with κ, respectively ξ arbitrary functions. With this assumption Eq. (4.133)
becomes (

∂p

∂F

)

Ψ
= − 1

µ0

1

κ(Ψ)
F (4.137)

which we can integrate immediately

p = p0(Ψ)− 1

2µ0κ(Ψ)
F 2 (4.138)

with p0(Ψ) an arbitrary background pressure. If we make the further as-
sumption that the density ρ is defined by Eq. (4.134) we have completed
the integration of the force balance equation. The temperature T can be
calculated if we assume that p, ρ and T are related by the ideal gas law

p =
1

µ
RρT (4.139)

where µ is the mean molecular weight.
We still have to determine the magnetic field. To do this we express F

in terms of P and substitute this expression for F into Eq. (4.129). We get

F =
1

g
ξ(z)Bz = −1

g
ξ(z)

(

∂2P

∂x2
+
∂2P

∂y2

)

. (4.140)

Substituting this into Eq. (4.129) we obtain

∆P + α2P − ξ(z)

(

∂2P

∂x2
+
∂2P

∂y2

)

= 0. (4.141)
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We have found a linear equation for P and we can solve it with separation
of variables. The coefficients of the differential equation depend only on z
and we can therefor use Fourier integrals for the x and y dependence

P (x, y, z) =

∞∫

−∞
dkx

∞∫

−∞
dky exp(ikxx+ ikyy)P̃ (kx, ky , z). (4.142)

P̃ has to obey the equation

d2P̃

dz2
+ [α2 − k2 + k2ξ(z)]P̃ = 0 (4.143)

with arbitrary ξ(z). This equation has the same mathematical structure as
a one-dimensional Schrödinger equation where ξ(z) replaces the potential
V (z) and k2 − α2 the energy eigenvalue E. This similarity enables us to
find plenty of solutions. For example, ξ(z) = ξ0 = constant allows the same
solution structure as the linear force-free case, ξ ∝ z2 gives the “harmonic
oscillator” solutions, ξ ∝ 1/z the “Coulomb potential” case and so forth.

The solutions derived in this way contain three different contributions to
their current density: the linear force-free part αB, a non-linear force-free
part given by the parallel component of the ∇F ×∇Ψ-term and a non-force-
free part given by the perpendicular part of the ∇F ×∇Ψ-term.

Due to the similarity of Eq. (4.141) to the Helmholtz equation for P
in the linear force-free case, one can develop a Green’s function method
for this class of MHS solutions in the same way as for the linear force-free
solutions (Petrie and Neukirch, 2000). This method can in principle be
used to determine not only the magnetic field, but also the plasma pressure,
density and temperature from boundary data.

Using the same general approach, solutions have also been found for
cases in which F and Bz are nonlinear functions of each other (Neukirch,
1997b).
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